CRC Report No. 587

1992 CRC OCTANE NUMBER REQUIREMENT SURVEY

August 1993

ALTHOUGH FOR PLACE COLUMN CONTROL CONT

93 12 21 185

COORDINATING RESEARCH COUNCIL, INC. 219 PERIMETER CENTER PARKWAY, ATLANTA, GEORGIA 30346 The Coordinating Research Council, Inc. (CRC) is a non-profit corporation supported by the petroleum and automotive equipment industries. CRC operates through committees made up of technical experts from industry and government who voluntarily participate. The four main areas of research within CRC are: air pollution (atmospheric and engineering studies); aviation fuels, lubricants, and equipment performance; heavy-duty vehicle fuels, lubricants, and equipment performance (e.g., diesel trucks); and light-duty vehicle fuels, lubricants, and equipment performance (e.g., passenger cars). CRC's function is to provide the mechanism for joint research conducted by the two industries that will help in determining the optimum combinations of petroleum products and automotive equipment. CRC's work is limited to research that is mutually beneficial to the two industries involved, and all information is available to the public.

COORDINATING RESEARCH COUNCIL

INCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA, GEORGIA USA 30346

PHONE. (404) 396-3400

FAX. (404) 396-3404

SUSTAINING MEMBERS

American Petroleum Institute
ciety of Automotive Engineers, Inc.

1992 CRC OCTANE NUMBER REQUIREMENT SURVEY (CRC Project No. CM-123-92)

IN FORMULATING AND APPROVING REPORTS, THE APPROPRIATE COMMITTEE OF THE COORDINATING RESEARCH COUNCIL, INC. HAS NOT INVESTIGATED OR CONSIDERED PATENTS WHICH MAY APPLY TO THE SUBJECT MATTER. PROSPECTIVE USERS OF THE REPORT ARE RESPONSIBLE FOR PROTECTING THEMSELVES AGAINST LIABILITY FOR INFRINGEMENT OF PATENTS.

Prepared by the

1992 Analysis Panel

of the

Accesion For

NTIS CRA&I
DTIC FAB
Unannounced
Justification

Ey
Country Sold
Dist
Sold
A-1

CRC Octane Number Requirement Survey Group

DITO QUALANT CONTINED 3

August 1993

Automotive Vehicle Fuel, Lubricant, and Equipment Research Committee

of the

Coordinating Research Council, Inc.

ABSTRACT

An annual statistical survey of octane number requirements of current model vehicles is conducted by the Coordinating Research Council, Inc. Test data have been obtained by ten companies on 184 1992 vehicles including passenger cars and light-duty trucks and vans, of which 88 were equipped with knock Octane number requirements were determined by testing at maximumthrottle conditions, as well as at part-throttle; with four unleaded fuel series of varying sensitivities, one containing 15 percent methyl tertiary Requirements are expressed as the (R+M)/2 octane number, Research octane number, and Motor octane number of the reference fuel producing knock which was recurrent and repeatable at the lowest audible level. mated octane number requirements for the total vehicles are weighted in proportion to the 1992 vehicle model production and/or sales figures. The octane number requirements of 1992 models with average sensitivity unleaded fuels were 85.1 (R+M)/2 octane numbers at the 50 percent satisfaction level, and 92.0 (R+M)/2 octane numbers at the 90 percent satisfaction level. In order to make a more powerful test of statistical significance of the FBRUM fuel series, the 1991 ONRS was pooled with the 1992 ONRS and compared with the pooled data for the FBRU fuel series. There was no significant difference between the two fuel series up to about 90 percent satisfaction. Beyond 90 percent satisfaction, the variability in the data is high.

I. INTRODUCTION

This is the forty-sixth annual statistical survey of octane requirements of current model vehicles conducted by the Coordinating Research Council, Inc. This Survey studies distributions of vehicle octane requirements as a function of satisfaction levels and fuel sensitivity in a sample representative of 1992 model vehicles. Distributions of vehicle octane requirements are estimated from these data. The effect of fuel sensitivity, which is the difference between Research octane number (RON) and Motor octane number (MON), is investigated by using two full-boiling range fuel series and the primary reference fuel series. A third full-boiling range fuel series containing 15 percent methyl tertiary butyl ether (MTBE) was compared with the full-boiling range average sensitivity reference fuel for the second consecutive year. This was done to investigate vehicle response to an oxygenated fuel because vehicles do not respond to RON and MON in the same way.

Knock sensors enable engines to adapt to fuels of varying octane numbers which can result in lowest audible knock occurring over a range of octane numbers; however, only the high end of this range is determined for each knock-sensor-equipped vehicle and used for the distribution calculations.

The data in this Survey are obtained by trained raters under controlled conditions. For some vehicles, information on the owner's perception of vehicle knock and the owner's current choice of gasoline octane are available. A comparison between the trained rater's and customer's report of knock on tank fuel is presented, and trends are shown.

Ten companies participated in this Survey; they are listed in Appendix A. Members of the CRC Octane Number Requirement Survey Analysis Panel are identified in Appendix B.

II. SUMMARY

Octane number requirements were determined on 184 1992 model-year vehicles, including 146 passenger cars and 38 light-duty trucks and vans. Eighty-eight of the test vehicles were equipped with knock sensors. Estimated octane number requirements for the vehicle populations are weighted in proportion to the 1992 vehicle model production and/or sales data. Octane number requirements for the 1992 models and changes from 1991 for the four weighted vehicle population groups at the 50 percent and 90 percent satisfaction levels using FBRU (full-boiling range unleaded) and FBRUM (full-boiling range unleaded containing 15 percent MTBE) fuels are summarized below.

FBRU AND FBRUM (R+M)/2 OCTANE NUMBER REQUIREMENTS AND 95% CONFIDENCE LEVELS

1992 AND CHANGES FROM 1991

<u></u>	SE THIS CHIMICUS TROIT			
		A	FBRUM	•
	FBRU	from	Octane	from
Weighted Population	Octane Requirement	<u>1991</u>	Requirement	<u>1991</u>
	50% Satisfaction			
Total Vehicles (47.8%)*	85.1±0.8	-0.6	84.9±0.8	0.0
Total Cars (45.2%)*	84.0±0.6	-1.3	83.8±0.6	-0.7
Total Trucks and Vans (57.9%)*	87.4±1.6	+0.6	87.4±1.2	+1.5
Total Knock-Sensor Vehicle	85.7±1.4	+1.5	85.6±1.2	+1.7
	90% Satisfaction			
Total Vehicles (47.8)*	92.0±1.0	+1.1	91.0±1.0	+0.6
Total Cars (45.2)*	89.5±0.8	-0.7	88.7±0.8	-1.0
Total Trucks and Vans (57.9)*	93.0±2.2	-0.9	91.6±1.6	-4.0
Total Knock-Sensor Vehicles	92.9±1.8	+2.4	91.6±1.6	-2.1

^{*} Percent of knock-sensor-equipped vehicles tested within the associated population.

Octane number requirements of the total 1992 vehicle population decreased by 0.6 (R+M)/2 at 50 percent satisfaction and increased by 1.1 (R+M)/2 at 90 percent satisfaction compared with 1991 on FBRU fuels. Octane number requirements of 1992 knock-sensor vehicles increased by 1.5 (R+M)/2 at 50 percent satisfaction and increased by 2.4 (R+M)/2 at 90 percent satisfaction compared with 1991 on FBRU fuels. Changes in these distributions are significant at the 95 percent confidence level at 90 percent satisfaction for the total vehicle population, and at both 50 percent and 90 percent satisfaction for knock-sensor vehicles.

Octane number requirements of the total 1992 vehicle population was unchanged at 50 percent satisfaction and increased by 0.6 (R+M)/2 at 90 percent satisfaction compared with 1991 on FBRUM fuels. Octane number requirements of 1992 knock-sensor vehicles increased by 1.7 (R+M)/2 at 50 percent satisfaction and decreased by 2.1 (R+M)/2 at 90 percent satisfaction compared with 1991 on FBRUM fuels. Changes in these distributions are significant at the 95 percent confidence level for the knock-sensor vehicles only.

Part-throttle octane requirements were equal to or higher than the maximum-throttle octane requirements on 25 percent of all 1992 vehicles with FBRU fuels (46 of 183 vehicles). This compares with 34 percent of all 1991 vehicles with part-throttle requirement on FBRU fuels.

In the 1992 Survey, 23 percent of the owner-operated vehicles tested knocked on tank fuel according to trained raters.

The 1992 Survey included sufficient data for four specific models to be analyzed separately as select models. One select model was equipped with a knock sensor. Octane requirements for the select models at the 50 percent and 90 percent satisfaction levels for FBRU fuels are summarized in the following table.

SELECT MODELS
MAXIMUM FBRU OCTANE NUMBER REQUIREMENTS

		(R+M)/2
	No.	50%	90%
Select Model	<u>Tested</u>	<u>Sat.</u>	Sat.
A	6	89.1	93.5
В	?	87.1	92.6
С	7	85.1	90.0
D	9	83.8	84.3

III. TEST VEHICLES

This year's Survey tested a total of 184 1992 model vehicles. The analysis of the data included 146 passenger cars and 38 light-duty trucks and vans. Also included are 88 knock sensor-equipped vehicles. (66 cars and 22 trucks and vans). Beginning with the 1987 Survey, test vehicles are divided into four main categories:

- (1) Total Vehicles, which includes all US and imported passenger cars and light-duty trucks and vans
- (2) Total Cars, which includes all US and imported passenger cars
- (3) Total Trucks and Vans, which includes all US and imported lightduty trucks and vans
- (4) Total Knock-Sensor Vehicles, which includes all knock-sensorequipped US and imported passenger cars and light-duty trucks and vans.

In the 1992 Survey, 86 percent of the transmissions were automatic. Thirty-six percent of the automatics were three-speeds, and the rest four-speeds. All of the manual transmissions were five-speeds, and all of the surveyed vehicles were air-conditioned.

The select models shown in Table 1 include four additional models, none of which were included in the program proposal (Table D-1 of Appendix D). Although not appearing as select models in the program proposal, these four models are included as select models because six or more vehicles per model were tested. Due to the small Survey size, three- and four-speed automatic-transmission vehicles were pooled to form two of the select models.

Table 2 shows the distribution of odometer mileage for both the 1992 and 1991 Surveys. The 1992 distribution is shown as a bar chart in Figure 1. The average odometer mileage was 14,143. The average displacement of those vehicles tested in 1992 was 3.2 liters, higher than in 1991. The average compression ratio of those vehicles tested in 1992 was 9.1, compared to 9.0 in 1990.

Trends in the sales-weighted average compression ratio, engine displacement, and knock-sensor penetration for the US vehicle population over the last five model years are shown below. Also included are the percent of vehicles tested in this Survey which have automatic transmissions and air conditioners.

1992 ONR SURVEY TEST VEHICLE DATA

Average Vehicle Parameters

	Sales	Weighted		Percent of Vehicles Teste		
Model	Displacement	Compression	% Knock	Automatic	Air	
<u>Year</u>	(liters)	Ratio	Sensor	<u>Transmissions</u>	Conditioners	
1992	3.2	9.1	47.8	86	100	
1991	3.1	9.0	38.2	85	97	
1990	3.1	9.0	42.9	87	97	
1989	3.1	9.0	40.2	86	97	
1988	3.0	9.0	39.6	82	92	

The basic spark timing was adjusted to the manufacturer's recommended setting (within $\pm 1^{\circ}$) prior to testing. One vehicle that was 3° off from the manufacturer's setting was adjusted. The number of vehicles and their deviation in spark setting are shown in Table 3.

IV. REFERENCE FUELS

Four series of reference fuels were used in the 1991 and 1992 Survey:

- Primary Reference (PR) Fuels
- Average-Sensitivity Full-Boiling Range Unleaded (FBRU) Reference Fuels with sensitivities similar to those of commercial gasoline
- High-Sensitivity Full-Boiling Range Unleaded (FBRSU) Reference Fuels with sensitivities about two octane numbers higher than the FBRU fuels.
- Average-Sensitivity FBRU Reference Fuels with 15 percent methyl tertiary butyl ether (MTBE) added (FBRUM).

A. PR Fuels

Isocctane and normal heptane, meeting ASTM specifications, were blended in two octane number increments from 76 to 82 octane numbers, and in one octane number increments from 82 to 100 octane numbers.

B. FBRU Reference Fuels

FBRU fuels were prepared from three base blends (RMFD-377-91/92, RMFD-378-91/92, and RMFD-379-91/92) in two octane number increments from 80 to 84 RON, and in one octane number increments from 84 to 103 RON. The base blends were prepared from normal refinery components. Inspection data furnished by the supplier are shown in Appendix C, Table C-1. The composition and average laboratory octane data for the 1991/1992 FBRU reference fuel series are presented in Appendix C, Table C-2.

C. FBRSU Reference Fuels

FBRSU fuels were prepared from three base blends (RMFD-380-91/92 RMFD-381-91/92, and RMFD-382-91/92) in two octane number increments from 80 to 84 RON, and in one octane number increments from 84 to 103 RON. The base blends were prepared from normal refinery components. Inspection data furnished by the supplier are shown in Appendix C, Table C-3. The laboratory blending octane data for the 1991/1992 FBRSU reference fuels are presented in Appendix C, Table C-4.

D. FBRUM Reference Fuels

FBRUM fuels were prepared from three base blends (RMFD 383-91/92, RMFD 384-91/92, and RMFD 385-91/92) in one octane number increments from 84 to 105 RON. The base blends were prepared from the FBRU series fuels with 15 percent methyl tertiary butyl ether (MTBE) added. Inspection data furnished by the supplier as shown in Appendix C, Table C-5. The laboratory blending octane data for the 1991/1992 FBRUM reference fuels are shown in Appendix C, Table C-6.

V. TEST TECHNIQUE

The test technique (CRC Designation E-15-92, Attachment 2 of Appendix D) specified that octane number requirements be determined at level road acceleration conditions. The order of fuel testing was tank fuel, FBRSU fuels, FBRU fuels, PR fuels, and FBRUM fuels. Knocking tendencies were investigated using both maximum—throttle and part—throttle acceleration techniques.* Part—throttle was investigated in each vehicle to determine if the part—throttle requirement was higher or equal to the maximum—throttle requirement with all three fuel series. Part—throttle requirements were also determined with FBRU fuels down to four Research octane numbers below the requirement at maximum—throttle.

The octane number requirement of a vehicle is defined as the octane number of the highest octane test fuel producing borderline knock. This requirement is defined at either maximum— or part—throttle acceleration conditions. Requirements are expressed as the (R+M)/2 octane number, Research octane number (RON), and Motor octane number (MON) of the reference fuel which produces knock that is recurrent and repeatable at the lowest audible level.

Of the ten laboratories participating in the 1992 Survey, all used chassis dynamometers.

Average test temperature was 72°F, with a barometric pressure average of 29.68 inches Hg and average humidity of 55 grains per pound. Test conditions for individual observations are reported in Appendix E.

^{*} Maximum-throttle is either full-throttle for manual transmissions or widest throttle position (detent) that does not cause the transmission to downshift for automatic transmissions.

The table below shows the average test conditions and the average odometer readings for the last five Surveys.

Average Ambient Test Conditions

		Barometric		
		Pressure,	Humidity,	
<u>Year</u>	Temperature, F°	inches Hq	grains per pound	Mileage
1992	72	29.68	55	14143
1991	68	29.72	50	14112
1990	74	29.77	63	11782
1989	69	29.75	58	12772
1988	70	29.84	57	12407

There is general agreement that ambient temperature, pressure, and humidity can influence the octane number requirement of a vehicle at any time. (1,2) Octane requirement increases as temperature and pressure increase, and as humidity decreases. The coefficients of these effects are difficult to determine and may be dependent upon the vehicle.

VI. DISCUSSION OF RESULTS

A. <u>Distribution of Octane Number Requirements</u>

The octane number requirement data were used to prepare satisfaction curves and tables for the following samples of 1992 model vehicles:

- (1) Total Vehicles,
- (2) Total Cars,
- (3) Total Trucks,
- (4) Total Knock-Sensor Vehicles.

⁽¹⁾ B. D. Keller, J. H. Steury, T. C. Wagner, SAE Paper 780668 (1978)

⁽²⁾ H. A, Bigley, Jr., B. D. Keller and M. G. Kloppe, SAE Paper 710675 (1971).

(R+M)/2, RON, and MON requirements and 95 percent confidence limits for the four categories at 50 percent and 90 percent satisfaction are shown in Table 4. In preparing the curves and tables, the octane number requirement data were weighted in accordance with final 1992 model-year production and/or sales figures. Each curve and table, therefore, provides an estimate of the distribution of octane number requirements of the appropriate vehicle population on the road. The procedure for assigning weighting factors and for calculating the octane number requirement distributions is described in Appendix F.

Vehicles equipped with knock sensors were included in the 1992 models tested. All vehicles with knock sensors were tested for octane number requirements.

Requirements are expressed as the (R+M)/2, Research, and Motor octane numbers of the reference fuel which produced knock that was recurrent and repeatable at the lowest audible level.

Round-off techniques are described in Appendix F. The methods for computing confidence limits of octane number requirement distribution are described in Appendix G.

1. Total Vehicles

In the 1992 Survey, octane number requirements were determined on 183 vahicles with PR fuels, 183 vehicles with FBRU fuels, 184 vehicles with FBRSU fuels, and 179 vehicles with FBRUM fuels. Eighty-eight of the vehicles were equipped with knock sensors.

(R+M)/2 octane number requirements for all four reference fuels are shown in Figures 2, 3, 4 and 5. The (R+M)/2 octane number requirements for the three hydrocarbon-only reference fuels are plotted in Figure 6 and PR, FBRU, and FBRUM fuels in Figure 7. The octane number requirement distributions for FBRU and FBRSU fuels are similar. (R+M)/2, Research, and Motor octane number requirements for all four fuels are listed in Table 5. The 50 percent and 90 percent satisfaction level requirements are:

OCTANE NUMBER REQUIREMENTS

(Total Vehicles)

	50% Satisfied			90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON_	(R+M)/2	RON	MON
PR	87.6	87.6	87.6	93.6	93.6	93.6
FBRU	85.1	89.0	81.2	92.0	97.3	86.8
FBRSU	85.0	90.3	79.7	91.8	98.1	85.4
FBRUM	84.9	88.1	81.6	91.0	96.2	85.7

Differences between 1992 and 1991 Survey maximum (R+M)/2, Research, and Motor octane number requirements are also shown in Table 5 for the four fuel series. Distributions of the 1992 and 1991 maximum (R+M)/2 requirements are shown in Figure 8 for FBRU fuels. The differences at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1992 AND 1991 OCTANE NUMBER REQUIREMENTS

(Total Vehicles)

	50% Satisfied			90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	-0.6	-0.6	-0.6	-0.4	-0.4	-0.4
FBRU	-0.6	-0.8	-0.5	+1.1	+1.3*	+1.0*
FBRSU	-0.7	-0.8	-0.6	+0.3	+0.3	+0.3
FBRUM	0.0	-0.1	0.0	+0.6	+0.7	+0.4

^{*} Not significant at the 95 percent confidence level.

Confidence limits for octane number requirement distributions are given in Table 4 (See Appendix G, Table G-1). The yearly differences at the 50 and 90 percent satisfaction levels for most fuels are significant at the 95 percent confidence level. The exceptions are followed by an asterisk.

2. Total Cars

Octane number requirements were determined on 145 cars with PR fuels, 145 cars with FBRU fuels, 146 cars with FBRSU fuels, and 141 cars with FBRUM fuels.

(R+M)/2, Research, and Motor octane number requirements for all four fuel series are given in Table 6. The (R+M)/2 octane number requirement distributions for all three hydrocarbon-only reference fuel series are plotted in Figure 9 and PR, FBRU, and FBRUM fuels in Figure 10. Octane number requirements at the 50 percent and 90 percent satisfaction levels are:

OCTANE NUMBER REQUIREMENTS

(Total Cars)

	50%	50% Satisfied.			90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON	
PR	86.5	86.5	86.5	90.9	90.9	90.9	
FBRU	84.0	87.7	80.3	89.5	94.4	84.6	
FBRSU	84.0	89.2	78.9	88.9	94.2	82.9	
FBRUM	83.8	86.7	81.0	88.7	93.2	84.2	

Differences between the 1992 and 1991 Survey (R+M)/2, Research and Motor octane number requirements are also shown in Table 6 for all four fuels. Distributions of the 1992 and 1991 (R+M)/2 requirements are shown in Figure 11 for FBRU fuels. Differences between 1992 and 1991 data at the 7 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1992 AND 1991 OCTANE NUMBER REQUIREMENTS

(Total Cars)

	50% Satisfied			90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	~1.1*	-1.1*	-1.1*	-1.8*	-1.8*	-1.8*
FBRU	-1.3*	-1.5*	-1.0*	-0.7	-0.8	-0.6
FBRSU	-1.5*	-1.6*	-1.2*	-2.0*	-2.2*	-1.7*
FBRUM	-0.7*	-0.9*	-0.4	-1.0*	-1.4*	-0.7*

^{*} Not significant at the 95% confidence level.

Confidence limits for octane number requirement distributions of 1992 total cars are given in Table 4. Some of the yearly changes for the total car population are significant at 50 and 90 percent satisfaction at the 95 percent confidence level. The exceptions are followed by an asterisk.

Total Trucks and Vans

Octane number requirements were determined on 38 light-duty trucks and vans with PR, FBRU, FBRSU, and FBRUM fuels. (R+M)/2 octane number requirements for the three hydrocarbon-only reference fuel series are plotted in Figure 12 and PR, FBRU, and FB "M fuels in Figure 13. (R+M)/2, Research, and Motor octane number requirements for all four fuel series are given in Table 7. The 50 percent and 90 percent satisfaction level octane number requirements are:

OCTANE NUMBER REQUIREMENTS

(Total Trucks and Vans)

	50%	50% Satisfied			90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON	
PR	90.8	90.8	90.8	94.9	94.9	94.9	
FBRU	87.4	92.0	82.8	93.0	98.6	87.4	
FBRSU	87.9	93.8	82.1	92.4	98.8	86.0	
FBRUM	87.4	94.1	83.3	91.6	97.0	86.3	

Differences between the (R+M)/2, Research, and Motor octane number requirements of trucks in the 1992 and 1991 Surveys are also given in Table 7 for all four fuel series. The differences at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1992 AND 1991 OCTANE NUMBER REQUIREMENTS

(Total Trucks)

	50%	<u>Satisfi</u>	ed	90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	+1.0	+1.0	+1.0	-3.2*	-3.2*	-3.2*
FBRU	+0.6	+1.0	+0.3	-0.9	-0.8	-1.0
FBRSU	+1.5*	+1.8*	+1.4*	-0.2	-0.2	-0.1
FBRUM	+1.5*	+2.0*	+1.0*	-4.0*	-4.5*	-3.4*

^{*} Not significant at the 95 percent confidence level.

Distributions of the 1992 and 1991 (R+M)/2 requirements are shown in Figure 14 for FBRU fuels.

Confidence limits for octane number requirement distributions of 1992 trucks are tabulated in Table 4. Some of the yearly differences for the truck and van population at 50 and 90 percent satisfaction are significant at the 95 percent confidence level. The exceptions are followed by an asterisk.

4. Total Knock-Sensor Vehicles

Octane number requirements were determined on 87 vehicles containing knock sensors with PR fuels, 87 vehicles with FBRU, 88 vehicles with FBRSU fuels, and 87 vehicles with FBRUM fuels.

The distributions of (R+M)/2 octane number requirements are shown in Figure 15 for the three hydrocarbon-only fuel series and in Figure 16 for PR, FBRU, and FBRUM fuel series. (R+M)/2, Research, and Motor octane number requirements for all four fuel series are given in Table 8. Octane number requirements for the 50 percent and 90 percent satisfaction levels are:

OCTANE NUMBER REQUIREMENTS

(Total Knock-Sensor Vehicles)

	50% Satisfied			90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON
PR	87.4	87.4	87.4	94.6	94.6	94.6
FBRU	85.7	89.8	81.7	92.9	98.3	87.6
FBRSU	85.4	90.7	80.0	92.4	98.8	85.9
FBRUM	85.6	89.0	82.1	91.6	97.0	86.3

Differences between 1992 and 1991 Survey (R+M)/2, Research, and Motor octane number requirements are also shown in Table 8. Distributions of (R+M)/2 octane number requirements are shown in Figure 17 for FBRU fuels. The differences at the 50 percent and 90 percent satisfaction levels are:

DIFFERENCES BETWEEN 1992 AND 1991 OCTANE NUMBER REQUIREMENTS

(Total Knock-Sensor Vehicles)

	50%	50% Satisfied			90% Satisfied		
<u>Fuel</u>	(R+M)/2	RON	MON	(R+M)/2	RON	MON	
PP	+0.4	+0.4	+0.4	+0.7	+0.7	+0.7	
FBRU	+1.5*	+1.9*	+1.2*	+2.4*	+2.7*	+2.1*	
FBRSU	+1.9*	+2.1*	+1.5*	+1.0	+1.1*	+0.8	
FBRUM	+1.7*	+2.2*	+1.1*	+2.1*	+2.8*	+1.6*	

* Not significant at the 95 percent confidence level.

Confidence limits for octane number requirement distributions of 1992 knock-sensor vehicles are given in Table 4.

Some of the yearly differences for the total knock-sensor vehicle population are significant at 50 and 90 percent satisfaction at the 95 percent confidence level. The exceptions are followed by an asterisk.

5. FBRUM Fuels Series

The difference in the (R+M)/2 octane number requirement between the FBRU and FBRUM series for the total vehicle population has not been shown to be statistically significant at the 95 percent confidence level, at either 50 percent or 90 percent satisfaction.

The 1991 Survey data suggested that there may be a difference in satisfaction at 87 (R+M)/2 that was not there at 91 (R+M)/2. The 1992 Survey data do not support that same conclusion, as shown in Figure 7. Tables 9, 10, 11, and 12 show comparisons of the maximum ONR of FBRU and FBRUM fuels for the 1992 total vehicles, cars, trucks and vans, and knock-sensor vehicles.

In the last two Survey years, there has been more variability in the data sets due to the decreasing sample size. This increase in variability primarily manifests itself in the extremes of the distribution.

Figure 18 shows the 1992 Survey data pooled with the 1991 Survey data to make a more powerful test of statistical significance of the FBRUM series. Also plotted is the pooled 1991 and 1992 data for the FBRU series. The data show that there is no significant difference between the pooled data for the two fuel series up to about 90 percent satisfaction, where the influence of the 1991 data introduces more variability.

Pooling the 1991 and 1992 Survey data increases the sample size from 183 to 445 for the FBRU fuels and from 179 to 434 for the FBRUM fuels. The increase in sample size decreases the confidence interval as shown in the following table:

Comparison of FBRU and FBRUM Confidence Limits

	50%	Satisfied	90%	Satisfied
	1992	Pooled 1992 &	1992	Pooled 1992 &
	Data	1991 Data	<u>Data</u>	1991 Data_
FBRU .	.67	.43	.72	.55
FBRUM	.68	.43	.87	.56

B. Octane Number Requirement Trends

Trends over the last five years in the sales-weighted octane number requirements of the four vehicle categories analyzed in this report are given in the following table:

FBRU (R+M)/2 OCTANE NUMBER REQUIREMENTS 1988 TO 1992

Weighted Population	1992	<u>1991</u>	<u>1990</u>	<u>1989</u>	<u>1988</u>
50% Satisfaction					
Total Vehicles	85.1	85.7	85.4	85.1	84.7
Total Cars	84.0	85.3	85.0	84.8	84.7
Total Trucks	87.4	86.8	85.8	85.8	84.8
Total Knock-Sensor Vehicles	85.7	84.2	85.5	85.4	85.0
90% Satisfaction					
Total Vehicles	92.0	90.9	89.2	89.2	89.3
Total Cars	89.5	90.2	89.2	89.2	89.2
Total Trucks	93.0	93.9	89.0	89.2	89.6
Total Knock-Sensor Vehicles	92.9	90.5	89.7	89.7	90.2

C. <u>Part-Throttle Requirements</u>

Part-throttle octane requirements were equal to or higher than the maximum-throttle octane requirements on 25 percent of all 1992 vehicles with FBRU fuels (46 of 183 vehicles). This compares with 34 percent in 1991.

D. <u>Select Models</u>

Select models, representing four engine driveline combinations, were tested. The select models tested in this year's Survey included one knock-sensor-equipped model. The specifications of the select models are in Table 1.

Octane number requirements for each select model at various satisfaction levels are listed in Tables 13 through 16.

E. Tank Fuel

Tank fuel was tested for incidence of knock on all vehicles. Owners' questionnaires, however, were obtained only when the vehicle tested had a regular driver and the spark timing was not reset.

1. Owner/Rater Comparisons of Tank Fuel Knock

For 34 vehicles, both owner and rater data were reported, and no adjustments of spark timing were made. The trained raters reported that 24 percent of the owner-operated vehicles knocked, while the owners reported that 12 percent knocked, an owner/rater knock ratio of 0.50. The 24 percent of vehicles found to be knocking by trained raters compares with 44 percent for the 1991 Survey. These owner/rater comparisons of tank fuel knock for 1992, along with previous Survey data back to 1985, are presented in Table 17.

Tank fuel Research and Motor octane number data were reported for a total of 34 vehicles with both owner/rater data and no adjustments of spark timing. Thirty vehicles were reported to have tank fuel octane numbers less than 91.0 (R+M)/2. Trained observers reported knock on 23 percent of these, compared with 13 percent for owners. Of the other 4 vehicles having tank fuels greater than or equal to 91.0 (R+M)/2, none knocked according to trained raters and owners.

2. Objectionable Versus Non-Objectionable Tank Fuel Knock

Of the owners reporting tank-fuel knock with vehicles which had no change in spark timing, none found the knock to be objectionable, as compared to 29 percent in the 1991 Survey. Comparisons of objectionable knock for the 1985 through 1992 Surveys are also given in Table 17.

3. Tank Fuel Knock Reported by Trained Raters

Tank fuel knock observations were reported for 34 of the 184 vehicles tested. The percentages of all 1992 vehicles knocking on tank fuel are shown in Table 18. Knock was observed on 23.5 percent of the 1992 vehicles tested, compared with 44 percent in the 1991 Survey.

The percentages of select models knocking on tank fuel are shown in Tables 13 through 16.

F. Engine Speed for Octane Number Requirements

Engine speeds at which octane number requirements occurred for each select model are shown in Tables 13 through 16 for PR, FBRU, FBRSU, and FBRUM fuels. Weighted data for all 1992 vehicles are shown in Table 19.

G. Gear Position for Octane Number Requirements

The throttle/gear position for octane number requirements on FBRU fuels is shown in Table 20. Of the 184 vehicles tested, 159 (86 percent) were equipped with automatic transmissions and 25 (14 percent) were equipped with manual transmissions.

Requirements at maximum-throttle occurred in 77 percent of the automatic transmission vehicles (22 percent in fourth gear, 54 percent in third gear, 23 percent in second gear, and less than 1 percent in first gear). Requirements at part-throttle occurred in 23 percent of the automatic transmission vehicles (53 percent in fourth ge r and 47 percent in third gear).

For manual transmission vehicles, 58 percent had requirements at maximum-throttle (79 percent in fourth gear and 7 percent in third, second, and first gear.) Requirements at part-throttle occurred in 42 percent of manual transmission vehicles (80 percent in fourth gear and 20 percent in third gear). Fifth gear for five-speed manual transmissions was not examined per program instructions.

H. Extended 1992 Data Set

Because of the small sample size, the Data Analysis Panel investigated supplementing the 1992 data set with those vehicles for the 1991 data set that were identified as carry-overs. The manufacturers were asked to identify those vehicles that had no significant equipment-driven changes in octane response. Only 36 of the 1991 Survey vehicles were identified and could be combined into the 1992 data set (called the extended 1992 data set).

Table 21 shows the FBRU, FBRSU, and FBRUM (R+M)/2 octane number requirements and 95 percent confidence levels for the 1992 and 1992 extended data set for the four weighted vehicle populations. The addition of the 36 vehicles resulted in some very minor improvements in the 95 percent confidence level. There was essentially no change in the satisfaction curves. Because the manufacturers make yearly technological advancements, this exercise shows that unless there is a larger number of carry-overs to extend a data set, there appears to be little to gain from adding a small number of the previous year's vehicles.

TABLES

and

FIGURES

TABLE 1

1992 SELECT MODEL SPECIFICATIONS

<u>Model</u>	Knock Sensor	Disp.	Engine Type	Fuel System Type *	Comp. Ratio	Brake <u>HP</u>	Trans- mission
A	N	2.3	L4	P	9.0	98	A3
В	N	2.2	L4	P	9.0	110	A3
С	Y	3.3	V6	P	9.0	160	A3/A4
D	N	1.6	L4	P	9.5	102	A3/A4

Individual manufacturers may use different abbreviations.

^{*} P = Port Fuel Injection;

TABLE 2

DISTRIBUTION OF ODOMETER MILEAGE

FOR TESTED VEHICLES

No. of Vehicles Within Mileage Increments

Mileage	1992 Vehicles	1991 Vehicles
0 - 1,999	0	0
2,000 - 3,999	0	o
4,000 - 5,999	2	1
6,000 - 7,999	44	. 39
8,000 - 9,999	25	31
10,000 - 11,999	16	37
12,000 - 13,999	16	20
14,000 - 15,999	15	38
16,000 - 17,999	17	37
18,000 - 19,999	10	21
20,000 - 24,999	24	28
25,000 - 29,999	11	8
30,000 +	4	2
No. of Vehicles	184	262
Average Mileage	14,143	14,112

TABLE 3

1992 BASIC SPARK TIMING ADJUSTMENTS

Degrees From Manufacturer's Setting	No. of	<u>Vehicles</u>
	+	-
1	0	0
2	0	0
3	1	0
4	0	0
	1	0
		_
Total vehicles adjusted Total vehicles not adjusted		1 183

TABLE 4

OCTANE NUMBER REQUIREMENTS WITH 95% CONFIDENCE LIMITS

		Ŋ	(R+M)/2	M)/2	Research Octane No.	tane No.	Motor Octane No.	ane No.
	Fuel	Vehicles	50% Sat. 90% Sat.	90% Sat.	50% Sat.	90% Sat.	50% Sat.	90% Sat.
Total Vehicles (184)	PR FBRU FBRSU FBRUM	183 183 184 179	87.6±0.7 85.1±0.8 85.0±0.7 84.9±0.8	93.6±1.0 92.0±1.0 91.8±1.0 91.0±1.0	87.6±0.7 89.0±0.9 90.3±0.8 88.1±1.0	93.6±1.0 97.3±1.2 98.1±1.1 96.2±1.4	87.6±0.7 81.2±0.6 79.7±0.6 81.6±0.5	93.6±1.0 86.8±0.8 85.4±0.8 85.7±0.7
Total Cars (145)	PR FBRU FBRSU FBRUM	145 145 146 141	86.5±0.6 84.0±0.6 84.0±0.6 83.8±0.6	90.9±0.8 89.5±0.8 88.9±0.8 88.7±0.8	86.5±0.6 87.7±0.8 89.2±0.7 86.7±0.8	90.9±0.8 94.4±1.0 94.2±1.0	86.5±0.6 80.3±0.4 78.9±0.5 81.0±0.4	90.9±0.8 84.6±0.6 82.9±0.7 84.2±0.6
Total Trucks and Vans (38)	PR FBRU FBRSU FBRSU	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	90.8±1.2 E7.4±1.6 87.9±1.3 87.4±1.2	94.9±1.6 93.0±2.2 92.4±1.8 91.6±1.7	90.8±1.2 92.0±1.8 93.8±1.5 91.4±1.6	94.9±1.6 98.6±2.5 98.8±2.0 97.0±2.2	90.8±1.2 82.8±1.4 82.1±1.1 83.3±0.8	94.9±1.6 87.4±1.9 86.0±1.8 86.3±1.7
Total Knock-Sensor Vehicles (88)	PR FBRU FBRSU FBRUM	87 88 87	87.4±1.3 85.7±1.4 85.4±1.4 85.6±1.2	94.6±1.8 92.9±1.8 92.4±1.8 91.6±1.6	87.4±1.3 89.8±1.6 90.7±1.6 89.0±1.5	94.6±1.8 98.3±2.2 98.8±2.1 97.0±2.1	87.4±1.3 81.7±1.1 80.0±1.1 82.1±0.8	94.6±1.8 87.6±1.8 85.9±1.8 86.3±1.6

TABLE 5 MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 TOTAL VEHICLES

	108	Diff	0.0	8 -0.2	3 -0.3	6 -0.3	0.0 7.	.6 0.3	2 0.5	5 0.8	7 0.4	0.4- 4.0	87.0 *****	89.5 *****
		1992	****	% 8.	80.3	80.9	81.7	82.6	83.2	84.5	85.7	7.98	87	80
ELS		1891	0.0	-0.2	-0.5	-0.5	-0.1	9.0	0.5	1.4	0.7	-5.3	4 + + + + + + + + + + + + + + + + + + +	* * * *
FBRUM FUELS	NO.	1992	***	4.48	85.5	98.6	8	89.9	91.2	93.7	96.2	97.1	97.9	101.2
	1)/2	biff. 1991	0.0	-0.2	7. 0-	-0.5	0.0	7.0	0.3	:	9.0	-4.6	*	***
	(R+M)/2	1992	*	82.1	82.9	83.7	8.9	86.2	87.2	89.1	91.0	91.8	92.5	4.26
		1991	-0.4	-0.2	-0.3	-0.7	-0.6	-0.5	0.0	0.2	0.3	-2.8	***	***
	NON	1992	75.0	76.8	77.9	78.8	7.02	7.08	81.7	63.0	85.4	86.2	88.1	89.3
FUELS		1991 1991	-0.7	-0.2	7. 0-	-1.0	-0.8	-0.9	0.1	0.2	0.3	-3.3	***	***
FBRSU FU	RON	15.82	83.3	1.98	87.8	89.0	90.3	91.4	93.4	95.0	98.1	99.5	101.4	102.8
FB	3/2	1991	-0.5	-0.2	-0.3	-0.8	-0.7	-0.7	0.0	0.2	0.3	-3.1	***	*
	(R+H)/2	1992	79.2	81.5	82.9	63.9	85.0	85.9	87.5	89.0	91.8	92.7	7.76	%.1
		1991	-0.3	-0.1	-0.5	9.0-	-0.5	4.0-	-0.2	0.3	1.0	-2.3	***	***
	æ	1992	7.1	. 82.9	3.6	80.3	81.2	82.1	82.7	84.3	8.8	87.6	88.8	8.0
ELS	=	1991	-0.6	-0.2	-0.8	-0.8	8. 0-	-0.7	-0.3	7.0	1.3	-2.8	****	**
FBRU FUELS	202	1882	82.4	85.4	86.5	87.7	89.0	4.06	8.16	0.76	97.3	4.86	8.8	101.4
	(R+M)/2	1991	4.0-	-0.5	-0.6	-0.7	-0.6	-0.5	-0.2	7.0	1:1	-2.5	***** 7.76	95.7 *****
	, ë	1992	8.	1.78	1.13	84.0	85.1	86.3	87.3	89.2	92.0	93.0	4.46	7.%
	PR Fuels	1991	-0.7	-0.9	-0.6	9.0-	-0.6	-0.3	7.0-	-0.3	-0.4	-3.7	***	****
	<u>«</u>	1992	6.18	84.0	85.4	86.5	87.6	89.0	90.2	91.6	93.7	9.46	9.6	96.1
		Percent Satisfied	01	50	30	07	20	8	02	98	8	ጽ	96	8

TABLE 6

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 TOTAL CARS

[For Knock Sensor Vehicles, Maximum (High-Borderline) Octane Number Requirements are Used]

					FBRU FUELS	ELS				-	FBRSU FUELS	ELS				u.	FBRUM FUELS	LS		
	8 8	PR Fuels	(R.	(R+H)/2	ROM	2	NON .		(R+H)/2	17.2	RON		30		(R+H)/2	1/2	Š		2	
Percent Satisfied	1992	1991	1992	Diff. 1991	1992	01ff. 1991	1992	1991 1991	1992	1991	1992	1991	1992	Diff 1991	1992	1991	1992	Diff.	1992	1991
5	80.8	-1.2	8. 1.	6.6	81.6	-1.0	76.6	-0.6	78.4	-1.2	82.5	-1.3	74.4	-0.9	***	0.0	* * *	0.0	****	0.0
20	83.5	-1.0	4.18	-0.9	84.5	-1.0	76.3	-0.7	7.08	-1.0	85.2	1.1	76.2	-0.8	***	*****	***	****	:	***
8	7.7	-1.0	82.5	-1.0	85.8	-1.2	7.6	-0.8	81.8	-1.2	9.98	-1.5	77.1	-1.0	\$2.4	-0.5	86.9	-0.5	80.0	-0.3
0,4	85.7	-1.0	83.2	-1.2	7.98	-1.5	7.6	-0.9	83.1	-1.3	88.0	•1.6	78.1	-1.1	63. 2	-0.6	85.9	-0.7	80.5	-0.4
20	86.5	1.1	% .0	-1.3	87.7	-1.5	80.3	-1.0	8.0	-1.5	89.5	-1.6	78.9	-1.2	83.8	-0.7	86.7	-0.9	81.0	-0.4
3	87.3	-1.3	85.0	-1.4	8.9	-1.6	1.18	-1.1	85.0	-1.3	2.06	-1.7	73.7	-1.0	% %	-0.5	88.0	-0.7	81.6	-0.3
2	88.4	-1.3	1.98	-1.2	90.2	-1.6	82.0	-0.7	85.7	-1.7	1.16	-2.0	80.3	-1.3	86.2	-0.1	89.9	0.0	82.5	-0.1
8	89.6	-1.4	87.1	-1.3	91.5	-1.7	82.7	-1.0	87.3	-1.4	93.1	-1.5	81.5	-1.2	87.0	9.0-	90.9	-0.9	83.1	-0.4
8	90.9		89.5	-0.7	7.76	.0. 8	9.48	-0.6	88.9	-2.0	6.46	-2.2	82.9	-1.7	86.7	-1.0	93.2	4.1-	84.2	-0.7
8	92.4		91.8	-2.1	97.0	-2.4	98.6	6.1.	7.16	-3.6	98.1	-3.9	85.4	-3.2	7.06	-2.3	95.9	-2.7	85.5	-2.0
8	93.5	*	9.4.6	***	100.2	****	89.0	***	95.0	*	\$01.6	***	88.3	**	94.1	***	% ••	**	7.88	****
8	94.2	***	9.9	***	102.4	102.4 *****	8.06	:	4444	0.0	***	0.0	***	0.0	97.1	**	103.2	***	9.0	***

TABLE 7

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 TOTAL TRUCKS AND VANS

		FBRU FU	ELS				EB.		;rs		1		<u>.</u>	BRUM FUE	its		
=	+H)/2	2	=	£	2	(R+H	0/2	ROM		HON		(R+H)	2/	₩O.		S.	
1992	1991	1992	01ff. 1991	1992	Diff.	1992	1891	1992	1991	1992	Diff 1991	1992	1991	1992	biff.	1992	1991
82.3	1.4	85.6	1.8	8.0	:	82.4	2.5	87.2	3.0	7.5	1.9	82.2	0.1	84.5	0.2	8.6	1.0
8.8	1.2	87.4	1.5	80.2	1.0	43.4	6 .	88.5	2.2	78.4	1.4	63.0	-0.1	85.6	-0.1	7.08	0.0
1.58	0.7	89.0	6.0	81.2	9.0	84.0	0.7	90.0	0.8	3.5	9.0	94.6	0.5	87.7	9.0	31.5	7.0
4.98	0.9	9.06	1.0	82.2	7.0	86.0	0.8	91.6	=	80.5	9.0	85.8	8.0	89.3	:	82.2	0.5
4.78	9.0	92.0	1.0	82.8	0.3	87.9	1.5	93.8	1.8	82.1	1.4	87.4	5:	91.4	2.0	83.3	1.0
4.88	1.2	93.1	1.4	63.6	6.0	89.0	2.0	6.%	2.2	83.0	1.7	89.1	2.3	93.8	3.1	84.5	1.6
1.06	2.2	2.3	2.5	85.1	1.9	89.9	2.2	96.0	2.4	83.8	4.6	90.3	2.8	4.5%	3.8	85.3	6:
	2.2	97.3	2.5	8.98	1.9	91.7	2.4	98.1	2.7	85.4	2.1	91.0	2.5	8.5	3.2	85.7	1.6
	*	**	:	***	:	92.4	-0.5	98.8	-0.2	86.0	-0.1	91.6	-4.0	97.0	-4.5	86.3	-3.4
	*	*	***	***	***	:	0.0	:	0.0	*	0.0	92.1	-5.8	97.5	9.9-	86.7	6.4-
	0.0	*	0.0	***	0.0	***	0.0	*	0.0	****	0.0	*	0.0	*	0.0	*	0.0
	0.0	*	0.0	**	0.0	****	0.0	***	0.0	****	0.0	*	0.0	* * *	0.0	***	0.0
1991 1991 1.3 1.3 1.4 1.0 0.7 0.5 0.0		(R+H)/ 1992 19 82.3 83.8 85.1 85.4 86.4 80.1 92.0	68.4 0.9 85.1 0.7 86.4 0.6 86.4 0.9 87.4 0.6 86.4 1.2 90.1 2.2 92.0 92.0	RRU FUELS (R+H)/2 ROM 1992 1991 1992 19 82.3 1.4 85.6 1 83.8 1.2 87.4 85.1 0.7 89.0 86.4 0.9 90.6 86.4 1.2 93.1 90.1 2.2 95.1 92.0 2.2 97.3 ***********************************	FBRU FUELS CR+H)/2 ROM D1ff. D1ff. B2.3 1.4 85.6 1.8 79.0 B2.3 1.4 85.6 1.8 79.0 B3.8 1.2 87.4 1.5 80.2 B5.1 0.7 89.0 0.9 81.2 B6.4 0.9 90.6 1.0 82.3 B6.4 1.2 93.1 1.4 83.4 90.1 2.2 95.1 2.5 86.1 92.0 2.2 97.3 2.5 86.1 86.4 8.5 86.1 86.1 86.1 90.1 2.2 97.3 2.5 86.1 86.5 86.5 86.1 86.1 86.1 86.6 86.7 86.1 86.1 86.1 86.6 86.7 86.1 86.1 86.1 86.6 86.1 86.1 86.1 86.1 86.1 86.1 86.	FBRU FUELS (R+H)/2 ROM MOK 1992 1991 1992 1991 1992 1991 1992 1991 1992 1991 1992 1991 1992 1991 1992 1991 1992 1991 1992 1991 1992 1991 1992 1992 1991 1992 <td>FBRU FUELS (R+H)/2 ROM MOM D1ff. D1ff. D1ff. 92.3 1.4 85.6 1.8 79.0 1.1 82 85.1 0.7 89.0 0.9 81.2 0.6 84 85.1 0.7 89.0 0.9 81.2 0.6 86 86.4 0.9 90.6 1.0 82.2 0.7 86 86.4 0.9 90.6 1.0 82.8 0.3 81 86.4 0.9 90.6 1.0 82.8 0.3 81 86.4 1.2 93.1 1.4 83.6 0.9 83 90.1 2.2 95.1 2.5 86.8 1.9 9 92.0 2.2 97.3 2.5 86.8 1.9 9 88.8 8.8 8.8 8.8 1.9 9 90.1 2.2 97.3 2.5 86.8 1.9 9</td> <td>(R+M)/2 ROM HOM (R+M)/2 Diff. Diff. Diff. Diff. Diff. Diff. 1992 1991 1992 1991 1992 1991 1992 1991 82.3 1.4 85.6 1.8 79.0 1.1 82.4 2.5 85.1 0.7 80.0 0.9 81.2 0.6 83.4 1.8 86.4 0.9 90.6 1.0 82.2 0.7 86.0 0.7 86.4 0.9 90.6 1.0 82.8 0.9 86.0 0.8 86.4 1.2 93.1 1.4 83.6 0.9 89.0 2.2 90.1 2.2 95.1 2.5 86.8 1.9 91.7 2.4 92.0 2.2 97.3 2.5 86.8 1.9 91.7 2.4 92.0 2.2 97.3 2.2 86.8 1.9 92.4 -0.3</td> <td>FBRU FUELS FBRU FUELS<</td> <td> FBRU FUELS</td> <td> CR-MJ/2 ROM</td> <td> CR-M1/2</td> <td> CR+H1/2</td> <td> The color of the</td> <td> The color of the</td> <td> Fight Fuels Figh Fuels Figh</td> <td> The color of the</td>	FBRU FUELS (R+H)/2 ROM MOM D1ff. D1ff. D1ff. 92.3 1.4 85.6 1.8 79.0 1.1 82 85.1 0.7 89.0 0.9 81.2 0.6 84 85.1 0.7 89.0 0.9 81.2 0.6 86 86.4 0.9 90.6 1.0 82.2 0.7 86 86.4 0.9 90.6 1.0 82.8 0.3 81 86.4 0.9 90.6 1.0 82.8 0.3 81 86.4 1.2 93.1 1.4 83.6 0.9 83 90.1 2.2 95.1 2.5 86.8 1.9 9 92.0 2.2 97.3 2.5 86.8 1.9 9 88.8 8.8 8.8 8.8 1.9 9 90.1 2.2 97.3 2.5 86.8 1.9 9	(R+M)/2 ROM HOM (R+M)/2 Diff. Diff. Diff. Diff. Diff. Diff. 1992 1991 1992 1991 1992 1991 1992 1991 82.3 1.4 85.6 1.8 79.0 1.1 82.4 2.5 85.1 0.7 80.0 0.9 81.2 0.6 83.4 1.8 86.4 0.9 90.6 1.0 82.2 0.7 86.0 0.7 86.4 0.9 90.6 1.0 82.8 0.9 86.0 0.8 86.4 1.2 93.1 1.4 83.6 0.9 89.0 2.2 90.1 2.2 95.1 2.5 86.8 1.9 91.7 2.4 92.0 2.2 97.3 2.5 86.8 1.9 91.7 2.4 92.0 2.2 97.3 2.2 86.8 1.9 92.4 -0.3	FBRU FUELS FBRU FUELS<	FBRU FUELS	CR-MJ/2 ROM	CR-M1/2	CR+H1/2	The color of the	The color of the	Fight Fuels Figh	The color of the

TABLE 8
MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 TOTAL KNOCK-SENSOR VEHICLES

					FBRU FVELS	ELS				F8	FBRSU FUELS	ST:				F	FBRUM FUELS	rs		
	g.	PR Fuels	Ė	(R+H)/2	ROM	7	₹.	_	(R+H)/2	2/(1	ROM		*		(R+H)/2	2/	8		30	
Percent Satisfied	1992	Diff. 1991	1992	1991	1992	Diff. 1991	1992	Diff.	1992	1991	1992	1991	1992	1991	1992	1991	1992	Diff. 1991	1992	biff.
9	80.2	-0.2	9.6	0.0	81.5	-0.1	76.5	0.0	78.0	-0.5	81.9	-0.7	74.1	-0.4	*	0.0	**	0.0	**	0.0
2	83.5	:	6.	1.2	%	1.6	73.6	0.9	80.9	6.0	4.28	1.0	76.4	0.7	81.9	***	84.0	***	7.6	***
R	% %	0.3	82.7	1.0	86.0	1:1	79.3	7.0	81.9	6.0	9.98	7.	77.2	0.7	83.1	1.0	85.8	4:4	80.5	0.7
9	85.9	0.2	4.	1.5	88.2	1.8	90.6	1:1	83.9	1.8	89.0	2.2	85. 83.	1.5	2	1.1	1.78	1.5	1.1	0.7
8	4.78	4.0	85.7	5.1	8.8	1.9	81.7	1.2	85.4	1.9	7.06	2.1	0.08	1.5	\$5.6	1.7	89.0	2.2	82.1	1.1
3	9.6	1.0	86.9	1.2	91.3	1.6	82.6	1.0	87.0	1.5	7.26	1.9	81.3	1.2	7.98	1.9	90.5	5.6	82.9	1.3
2	91.0	0.8	88.0	0.7	92.7	6.0	83.3	9.0	89.0	5.4	95.0	2.7	83.0	2.0	\$6.5	5.5	92.9	3.3	%	1.7
2	93.2	1.3	91.9	3.4	1.79	3.8	7.98	2.9	91.6	3.4	97.9	3.7	85.2	2.9	8.06	3.5	98.0	4.7	85.5	2.2
8	9.76	0.7	92.9	5.4	98.3	2.7	87.6	2.1	92.4	1.0	98.8	1:1	85.9	9.0	91.6	1.2	97.0	2.8	86.3	1.6
&	3.8	-1.8	94.1	0.3	8.6	0.3	9.83	0.3	93.3	1.4	8. 8.	-1.5	8.8	-1.2	92.1	-3.7	97.5	-4.2	7.98	-3.2
8	***	0.0	95.3	-1.2	101.0	-1.3	26.7	-1.1	94.5	***	101.1	****	87.8	*	93.5	9.4-	99.0	-5.3	87.9	-3.9
8	***	0.0	8.5	***	101.9	*	4.06	****	95.3	**	102.0	* * *	88.6	****	95.9	***	101.8	***	89.9	***

TABLE 9

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 TOTAL VEHICLES

Comparison FBRUM and FBRU Fuels

			(R+M)/2			RON			MON	
Satisfied	PRF	FBRU	FBRUM	Diff.	FBRU	FBRUM	Diff.	FBRU	FBRUM	Diff.
10	81.9	79.8	****	****	82.4	****	****	77.1	****	****
20	84.0	82.1	82.1	0.0	85.4	84.4	-1.0	78.9	79.8	0.9
30	85.4	83.1	82.9	-0.2	86.5	85.5	-1.0	79.6	80.3	0.7
40	86.5	84.0	83.7	-0.3	87.7	86.6	-1.1	80.3	80.9	0.6
50	87.6	85.1	84.9	-0.2	39.0	88.1	-0.9	81.2	81.7	0.5
60	89.0	86.3	86.2	-0.1	90.4	89.9	-0.5	82.1	82.6	0.5
70	90.2	87.3	87.2	-0.1	91.8	91.2	-0.6	82.7	83.2	0.5
80	91.6	89.2	89.1	-0.1	94.0	93.7	-0.3	84.3	84.5	0.2
90	93.7	92.0	91.0	-1.0	97.3	96.2	-1.1	86.8	85.7	-1.1
95	94.6	93.0	91.8	-1.2	98.4	97.1	-1.3	87.6	86.4	-1.2
98	95.6	94.4	92.5	-1.9	99.9	97.9	-2.0	88.8	87.0	-1.8
99	96.1	95.7	95.4	-0.3	101.4	101.2	-0.2	90.0	89.5	-0.5

TABLE 10

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 CARS
Comparison FBRUM and FBRU Fuels

			(R+M)/2			RON			MON	
Satisfied	PRF	FBRU	FBRUM	Diff.	FBRU	FBRUM	Diff.	FBRU	FBRUM	Diff.
10	80.8	79.1	****	****	81.6	****	****	76.6	****	****
20	83.5	81.4	****	****	84.5	****	****	78.3	****	****
30	84.7	82.5	82.4	-0.1	85.8	84.9	-0.9	79.1	80.0	0.9
40	85.7	83.2	83.2	0.0	86.7	85.9	-0.8	79.7	80.5	0.8
50	86.5	84.0	83.8	-0.2	87.7	86.7	-1.0	80.3	81.0	0.7
60	87.3	85.0	84.8	-0.2	88.9	88.0	-0.9	81.1	81.6	0.5
70	88.4	86.1	86.2	0.1	90.2	89.9	-0.3	82.0	82.5	0.5
80	89.6	87.1	87.0	-0.1	91.5	90.9	-0.6	82.7	83.1	0.4
90	90.9	89.5	88.7	-0.8	94.4	93.2	-1.2	84.6	84.2	-0.4
95	92.4	91.8	90.7	-1.1	97.0	95.9	-1.1	86.6	85.5	-1.1
98	93.5	94.6	94.1	-0.5	100.2	99.8	-0.4	89.0	88.4	-0.6
99	94.2	96.6	97.1	0.5	102.4	103.2	0.8	90.8	90.9	0.1

. TABLE 11

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 TRUCKS AND VANS
Comparison FBRUM and FBRU Fuels

		(R+M)/2			RON			HON		
Satisfied	PRF	FBRU	FBRUM	Diff.	FBRU	FBRUM	Diff.	FBRU	FBRUM	Diff.
10	82.9	82.3	82.2	-0.1	85.6	84.5	-1.1	79.0	79.9	0.9
20	85.8	83.8	83.0	-0.8	87.4	85.6	-1.8	80.2	80.4	0.2
30	88.1	85.1	84.6	-0.5	89.0	87.7	-1.3	81.2	81.5	0.3
40	89.8	86.4	85.8	-0.6	90.6	89.3	-1.3	82.2	82.2	0.0
50	90.8	87.4	87.4	0.0	92.0	91.4	-0.6	82.8	83.3	0.5
60	91.9	88.4	89.1	0.7	93.1	93.8	0.7	83.6	84.5	0.9
70	93.3	90.1	90.3	0.2	95.1	95.4	0.3	85.1	85.3	0.2
80	94.1	92.0	91.0	-1.0	97.3	96.2	-1.1	86.8	85.7	-1.1
90	94.9	****	91.6	****	****	97.0	****	****	86.3	****
95	95.6	****	92.1	****	***	97.5	****	****	86.7	****
98	****	****	****	0.0	****	****	0.0	****	****	0.0
99	****	****	****	0.0	****	****	0.0	****	****	0.0

TABLE 12

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 KNOCK-SENSOR VEHICLES

Comparison FBRUM and FBRU Fuels

Satisfied		(R+H)/2			ROH			HON		
	PRF	FBRU	FBRUM	Diff.	FBRU	FBRUM	Diff.	FBRU	FBRUM	Diff.
10	80.2	79.0	****	****	81.5	****	****	76.5	****	****
20	83.5	81.8	81.9	0.1	85.0	84.0	-1.0	78.6	79.7	1.1
30	84.8	82.7	83.1	0.4	86.0	85.8	-0.2	79.3	80.5	1.2
40	85.9	84.4	84.1	-0.3	88.2	87.1	-1.1	80.6	81.1	0.5
50	87.4	85.7	85.6	-0.1	89.5	89.0	-0.8	81.7	82.1	0.4
60	89.6	86.9	86.7	-0.2	91.3	90.5	-0.8	82.6	82.9	0.3
70	91.0	88.0	88.5	0.5	92.7	92.9	0.2	83.3	84.1	0.8
80	93.2	91.9	90.8	-1.1	97.1	96.0	-1.1	86.7	85.5	-1.2
90	94.6	92.9	91.6	-1.3	98.3	97.0	-1.3	87.6	86.3	-1.3
95	95.4	94.1	92.1	-2.0	99.6	97.5	-2.1	88.6	86.7	-1.9
98	****	95.3	93.5	-1.8	101.0	99.0	-2.0	89.7	87.9	-1.8
99	****	96.2	95.9	-0.3	101.9	101.8	-0.1	90.4	89.9	-0.5

TABLE 13

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 SELECT MODELS

SELECT MODEL: A

_	PR	FBRU			FBRSU			FBRUM		
% SAT.	o.n.	RON	MON	(R+M)/2			• • • •			(R+M)/2
5	87.1	87.5	79.7	83.6			84.8			
10	87.7	88.9	80.7	84.8	91.1	80.2	85.6	88.6	81.9	85.2
20	88.5	90.6	82.0	86.3	92.3	81.0	86.6	89.5	82.4	85.9
30	89.1	91.9	82.9	87.4	93.1	81.7	87.4	90.2	82.7	86.5
40	89.5	92.9	83.7	88.3	93.8	82.2	88.0	90.8	83.0	86.9
50	90.0	93.9	84.4	89.1	94.5	82.7	88.6	91.3	83.3	87.3
60	90.5	94.9	85.1	90.0	95.2	83.2	89.2	91.9	83.5	87.7
70	90.9	96.0	85.9	90.9	95.9	83.7	89.8	92.5	83.8	88.1
80	91.5	97.2	86.8	92.0	96.7	84.3	90.5	93.2	84.2	88.7
90	92.3	98.9	88.0	93.5	97.9	85.2	91.5	94.1	84.7	89.4
95	92.9	100.3	89.1	94.7	98.9	85.9	92.4	94.9	85.0	90.0
N	6	6	6	6	6	6	6	6	6	6
	90.0		84.4				88.6			
Std. Dev.	1.8	3.9	2.9	3.4	2.7	1.9	2.3	2.2		
t	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57
95% CONFIDENCE	IIMITS:									
@ 50% Sat.		4.1	3.0	3.5	2.8	2.0	2.4	2.3	1.1	1.7
	2.6	5.8	4.2	5.0	3.9	2.9	3.4	3.2	1.6	

SPEED RANGE FOR MAXIMUM OCTANE NUMBER REQIREMENTS % Vehicles Having Requirement in Indicated Speed (rpm) Range

SPEED R	ange	PR.	FBRU	FBRSU	FBRUM
1599 and	Lower	0	0	0	0
1600 -	1999	0	0	0	0
2000 -	2399	17	17	34	33
2400 -	2799	50	17	0	17
2800 -	3199	0	33	33	33
3200 and	Higher	33	33	33	17

% Select Model Knocking on Tank Fuel = 0 Number of Test Vehicles = 6 Vehicles Rated on Tank Fuel = 0

TABLE 14

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 SELECT MODELS

SELECT MODEL: B

•	PR				FBRSU			FBRUM		
SAT.	O.N.	RON	MON	(R+M)/2	RON	MON	(R+M)/2	RON	MON	(R+M)/2
5	82.5			80.1			81.3		78.7	
10	83.5	84.9	78.4	81.7	87.1	77.5	82.3	83.4	79.3	81.4
20	84.7	87.1	79.9	83.5	88.5	78.4	83.5	85.0	80.1	82.6
30	85.6	88.8	81.0	84.9	89.5	79.2	84.4	86.2	80.7	83.4
40	86.3	90.1	81.9	86.0	90.4	79.8	85.1	87.2	81.2	84.2
50	87.0	91.4	82.8	87.1	91.2	80.3	85.8	88.1	81.6	84.9
60	87.7	92.7	83.7	88.2	92.0	80.9	86.5	89.0	82.1	85.5
70	88.4	94.1	84.6	89.3	92.9	81.5	87.2	90.0	82.6	86.3
80	89.3	95.7	85.7	90.7	93.9	82.2	88.1	91.1	83.2	87.1
90	90.5	98.0	87.2	92.6	95.3	83.2	89.3	92.7	84.0	88.3
95	91.5	99.8	88.4	94.1	96.5	84.0	90.2	94.0	84.6	89.3
N	7	7	7	7	7	7	7	7	7	7
Mean	87.0	91.4	82.8	87.1			85.8		81.6	84.9
Std. Dev.	2.7	5.1	3.4	4.2	3.2	2.3	2.7	3.6	1.8	2.7
t	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45
95% CONFIDENCE	E limits:									
@ 50% Sat.	2.5	4.7	3.1	3.9	2.9	2.1	2.5	3.4	1.7	2.5
@ 90% Sat.				5.5						3.5

SPEED RANGE FOR MAXIMUM OCTANE NUMBER REQIREMENTS % Vehicles Having Requirements in Indicated Speed (rpm) Range

SPEED	RANGE	PR	FBRU	FBRSU	FBRUM
1599 ar	d Lower	0	14	0	0
1600 -	- 1999	14	29	0	0
2000 -	- 2399	29	0	14	17
2400 -	- 2799	43	57	72	66
2800 -	- 3199	14	0	14	17
3200 ar	nd Higher	0	0	0	0

% Select Model Knocking on Tank Fuel = 0 Number of Test Venicles = 7 Vehicles Rated on Tank Fuel = 0 -35-TABLE 15

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 SELECT MODELS

SELECT MODEL: C

	PR		FBRU			FBRSU			FBRUM	
% SAT.		RON		(R+M)/2			(R+M)/2		MON	(R+M)/2
5	77.2	81.1	76.3	78.7	82.4	74.5	78.4	82.9	79.1	81.0
10	78.9	82.8	77.4	80.1		75.7	80.0	84.1	79.7	81.9
20	81.0	84.9	78.7	81.8	86.6	77.2	81.9	85.5	80.4	83.0
30	82.5	86.4.	79.6.	83.0_	88.2	78.3	83.3	86.6	80.9	83.7
40	83.7	87.7	80.4	84.1	89.6	79.3	84.4	87.5	81.4	84.4
50	84.9	88.9	81.2	85.1	90.9	80.1	85.5	88.3	81.8	85.0
60	86.1	90.1	81.9	86.0	92.2	81.0	86.6	89.1	82.2	85.6
70	87.4	91.4	82.7	87.1	93.6	81.9	87.8	90.0	82.6	86.3
80	88.9	93.0	83.7	88.3	95.3	83.0	89.2	91.1	83.1	87.1
90	90.9	95.1	85.0	90.0	97.6	84.6	91.1	92.5	83.8	88.2
95	92.6	96.8	86.0	91.4	99.5	85.8	92.6	93.7	84.4	89.0
N	7	7	7	7	7	7	7	7	7	7
Mean	84.9	88.9	81.2	85.1	90.9	80.1	85.5	88.3	81.8	85.0
Std. Dev.	4.7	4.8	3.0	3.9	5.2	3.5	4.3 .	3.3	1.6	2.4
t	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45
5% CONFIDENCE	E limits:									
@ 50% Sat.	4.3	4.4	2.7	3.6	4.8	3.2	4.0	3.0	1.5	2.3
@ 90% Sat.				5.0				4.3		

SPEED RANGE FOR MAXIMUM OCTANE NUMBER REQIREMENTS % Vehicles Having Requirements in Indicated Speed (rpm) Range

SPEED F	ANGE	PR	FBRU	FBRSU	FBRUM
1599 and	Lower	33	33	0	40
1600 -	1999	33	33	67	20
2000 -	2399	17	17	33	40
2400 -	2799	17	17	0	0
2800 -	3199	0	0	0	0
3200 and	Higher	0	0	0	0

% Select Model Knocking on Tank Fuel = 0.0

Number of Test Vehicles = 7

Vehicles rated on Tank Fuel = 1

TABLE 16

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1992 SELECT MODELS Knock Sensor Select Model

SELECT MODEL: D

	PR		FBRU			FBRSU			FBRUM	I
% SAT.	O.N.	RON	MON	(R+M)/2	RON	MON	(R+M)/2	RON	мом	(R+M)/2
5	83.9	86.6	79.6	83.1	87.0	77.4	82.2	85.6	80.4	83.0
10	84.6	86.8	79.8	83.3	87.4	77.7	82.5	86.2	80.7	83.5
20	85.5	87.0	79.9	83.5	87.9	78.0	83.0	86.9	81.1	84.0
30	86.1	87.2	80.0	83.6	88.2	78.3	83.3	87.5	81.3	84.4
40	86.7	87.3	80:1	83.7	88.6	78.5	83.5	87.9	81.6	84.7
50	87.2	87.4	80.2	83.8	88.8	78.7	83.8	88.3	81.8	85.0
60	87.7	87.6	80.2	83.9	89.1	78. 9	84.0	88.8	82.0	85.4
70	88.2	87.7	80.3	84.0	89.4	79.1	84.3	89.2	82.2	85.7
80	88.8	87.9	80.4	84.2	89.8	79.3	84.6	89.7	82.5	86.1
90	89.7	88.1	80.6	84.3	90.3	79.7	85.0	90.5	82.8	86.6
95	90.4	88.3	80.7	84.5	90.7	80.0	85.3	91.1	83.1	87.1
N	9	9	9	9	9	9	9	9	9	9
Mean	87.2	87.4	80.2	83.8	88.8	78.7	83.8	88.3	81.8	85.0
Std. Dev.	2.0	0.5	0.3	0.4	1.1	0.8	1.0	1.7	0.8	1.2
t	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31
95% CONFIDENCE	limits:									
@ 50% Sat.	1.5	0.4	0.2	0.3	0.9	0.6	0.7	1.3	0.6	1.0
@ 90% Sat.	2.1	0.6	0.3	0.4	1.2	0.8	1.0	1.8	0.9	1.3

SPEED RANGE FOR MAXIMUM OCTANE NUMBER REQIREMENTS % Vehicles Having Requirements in Indicated Speed (rpm) Range

SPEE	D R	ange	PR	FBRU	FBRSU	FBRUM
1599	and	Lower	0	0	0	0
1600	_	1999	0	0	0	0
2000	-	2399	0	0	0	0
2400	-	2799	45	78	67	33
2800	-	3199	11	11	11	56
3200	and	Higher	44	11	22	11

% Select Model Knocking on Tank Fuel = 0 Number of Test Vehicles = 9 Vehicles Rated on Tank Fuel = 0

TABLE 17

OWNER/RATER COMPARISON OF TANK FUEL KNOCK

(1985-1992 CRC Octane Number Requirement Surveys)

Model Year:	1992	1991	1990	1989	1988	1987	1986 1985	1985
Fuel:	Unleaded	Unleaded	Unleaded	Unleaded Unlead	Unleaded	i i	Unleaded	Unleaded
Total Reports:	34	55	101	124	155	179	160	
Percent Knocking								
Trained Rater	23.5	43.6	21.8	30.6	39.4	39.7	33.1	37.8
Owner	11.8	12.7	4.0	7.3	15.5	24.0	16.3	18.9
Owner/Rater Ratio	0.50	0.29	0.18	0.24	0.39	0.61	0.49	0.50
Percent Owners Objecting	ting							
Based on:								
Total Reports	0.0	3.6	1.0	0.8	9.0	2.8	2.5	8°.
Owners Reporting Knock	0.0	28.6	25.0	11.1	4.2	11.6	15.4	51.9

TABLE 18

TANK-FUEL KNOCK REPORTED BY TRAINED OBSERVERS

	No.	Total Vehicles T	ested on Tank Fuel
Model Year	Survey	No. Tested	<pre>% Knocking (Wt. Avq.)</pre>
1992	184	34	29
1991	262	55	47
1990	356	103	18
1989	391	265	30
1988	391	293	31
1987	389	322	35
1986	377	330	31
1985	374	327	37

TABLE 19

ENGINE SPEEDS FOR OCTANE NUMBER REQUIREMENTS

Weighted % of Vehicles Having Requirements in Indicated (rpm) Ranges

All 1992 Vehicles

Engine Speed Range	PR <u>Fuels</u>	FBRU <u>Fuels</u>	FBRSU Fuels	FBRUM <u>Fuels</u>
1599 and Lower	17.5	21.0	18.1	23.2
1600 - 1999	17.2	10.8	11.0	10.1
2000 - 2399	14.8	17.3	13.9	12.8
2400 - 2799	23.9	24.4	22.0	23.3
2800 - 3199	13.1	15.3	16.0	13.6
3200 - 3599	7.6	6.7	8.2	11.0
3600 and Higher	5.9	4.5	10.8	6.0

THROTTLE/GEAR POSITION FOR 1992

TABLE 20

FBRU OCTANE NUMBER REQUIREMENTS

Throttle Position	Transmission Ty	rpe & Gear	No. of Vehicles*	% of Vehicles
	Automatic Tr	ansmission		
Maximum	4-Speed:	4th 3rd 2nd	27 31 19	14.8 17.0 10.4
	3-Speed:	3rd 2nd L	35 9 1	19.2 4.9 <1
Part	4-Speed:	4th 3rd 2nd	19 4 0	10.4 2.2 0.0
	3-Speed	3rd 2nd	13 0	7.1 0.0
	Manual Tran	smission		
Maximum	5-Speed:	4th 3rd 2nd L	11 1 1	6.0 <1 <1 <1
Part	5-Speed:	4th 3rd	8 2	4.4 1.1

^{*} One test vehicle not counted, because all FBRU fuels satisfied its octane number requirements.

TABLE 21

FBRU, FBRSU, AND FBRUM (R+M)/2 OCTANE NUMBER REQUIREMENTS AND 95% CONFIDENCE LEVELS

1992 AND EXTENDED 1992

Weighted Poplulation	Extended FBRU Octane Requirement	FBRU Octane Requirement	Extended FBRSU Octane <u>Requirement</u>	FBRSU Octane Requirement	Extended FBRUM Octane Requirement	FBRUM Octane Requirement
		504 8	50% SATISFACTION			
Total Vehicles	85.5±0.6	85.1±0.8	85.3±0.7	85.0±0.7	85.1±0.7	84.9±0.8
Total Cars	84.5±0.6	84.0±0.6	84.5±0.6	84.0±0.6	84.2±0.6	83.8±0.6
Total Trucks and Vans	87.4±1.6	87.4±1.6	87.9±1.3	87.9±1.3	87.4±1.2	87.4±1.2
Total Knock-Sensor Vehicles 85.9±1.3	les 85.9±1.3	85.7±1.4	85.5±1.3	85.4±1.4	85.6±1.1	85.6±1.2
		\$ 806	SATISFACTION			
Total Vehicles	92.0±0.8	92.0±1.0	91.9±1.0	91.8±1.0	91.0±0.9	91.0±1.0
Total Cars	89.8±0.8	89.5±0.8	80.0±0.8	88.9±0.8	89.0±0.7	88.7±0.8
Total Trucks and Vans	93.0±2.2	93.0±2.2	92.4±1.8	92.4±1.8	91.6±1.7	91.6±1.7
Total Knock-Sensor Vehicles 92.9±1.8	les 92.9±1.8	92.9±1.8	92.5±1.8	92.4±1.8	91.6±1.5	91.6±1.6

Figure 1
DISTRIBUTION OF ODOMETER MILEAGE FOR 1992 MODEL VEHICLES TESTED

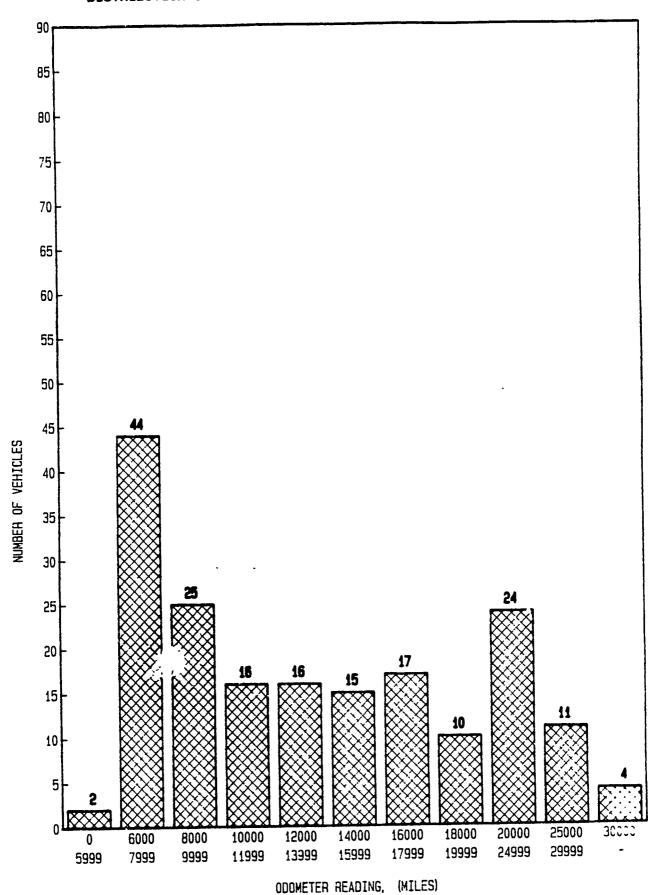
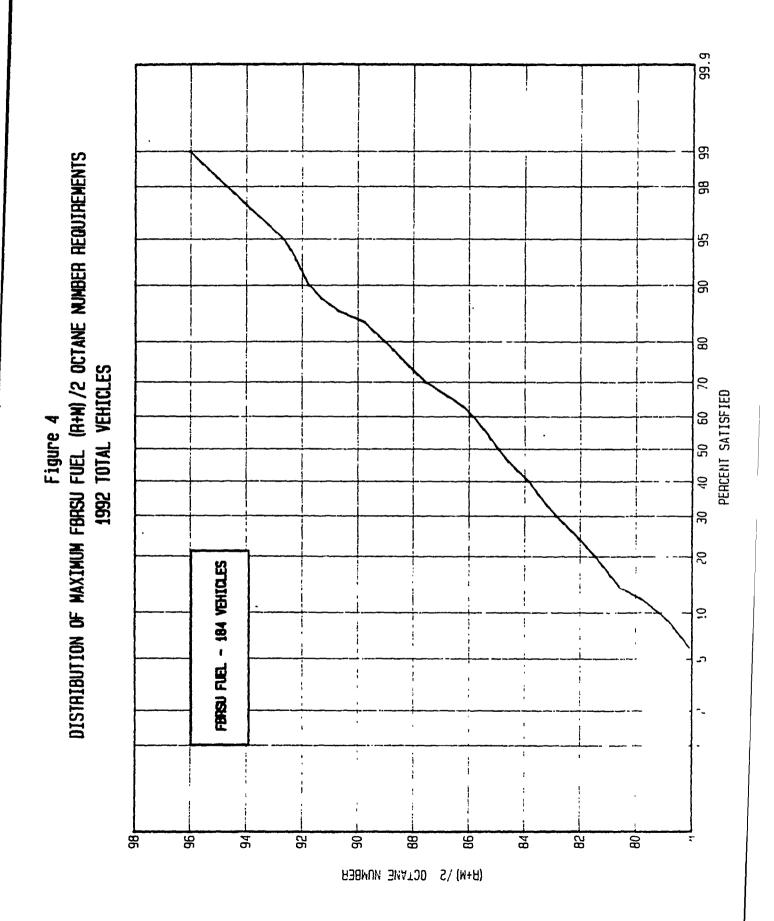
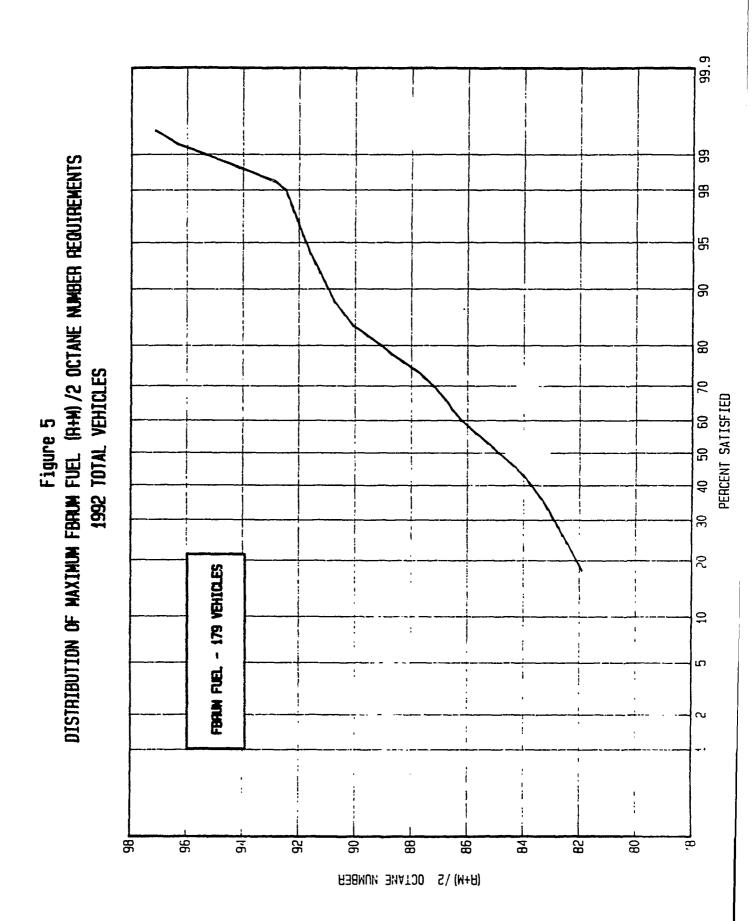
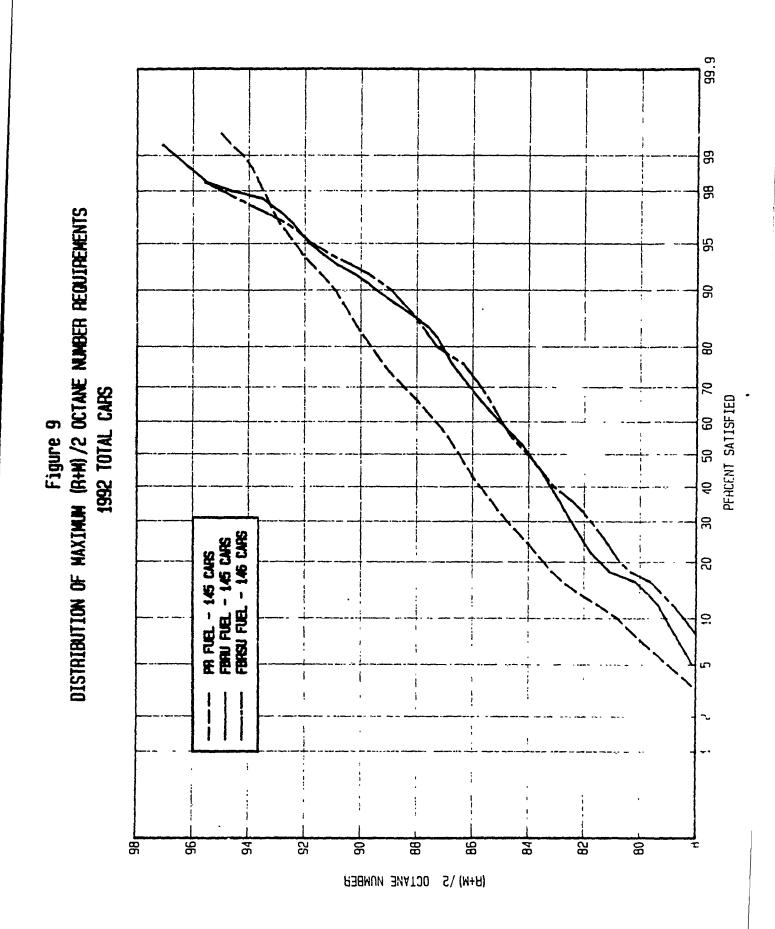
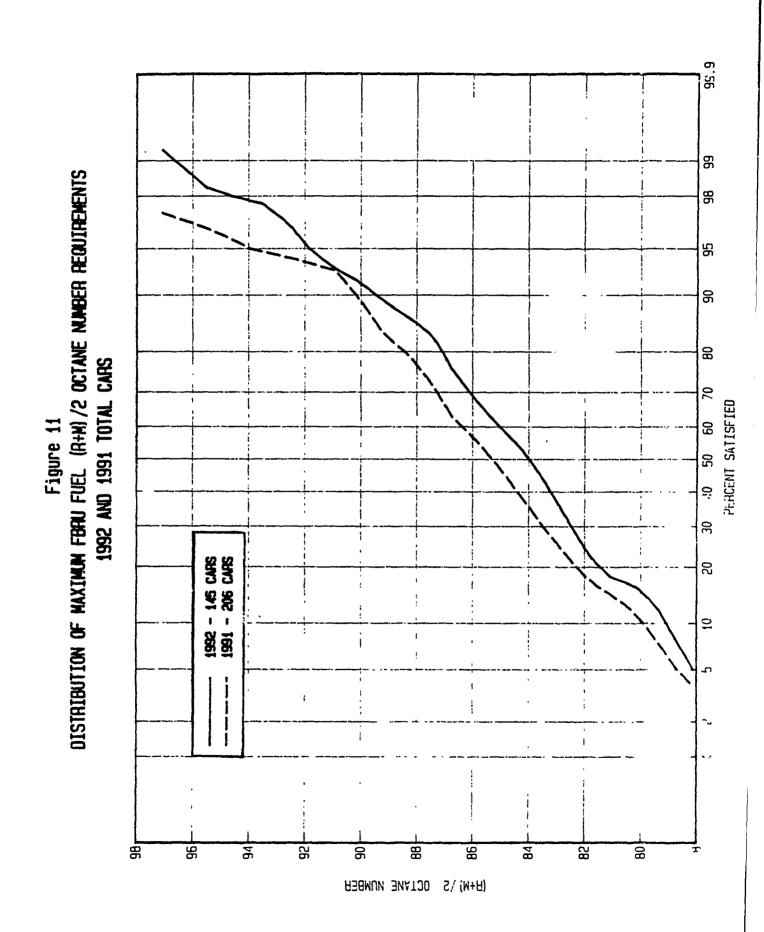




Figure 2 DISTRIBUTION OF MAXIMUM PR FUEL (R+M)/2 OCTANE NUMBER REQUIREMENTS 1992 TOTAL VEHICLES PERCENT SATISFIED ജ ನ PA FUEL - 183 VEHICLES (H+H) \S OCTANE NUMBER

99.9 Figure 3 DISTRIBUTION OF MAXIMUM FBRU FUEL (R+M)/2 OCTANE NUMBER REQUIREMENTS 1992 TOTAL VEHICLES PERCENT SATISFIED ജ ಜ FIRM PLEL - 183 VEHICLES 9, (M+H) /2 OCTANE NUMBER




99.9 Figure 6 DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS 1992 TOTAL VEHICLES PEACENT SATISFIED 50 60 PR FUEL - 183 VENIQLES FURU FUEL - 183 VENIQLES FURSU FUEL - 184 VENIQLES HBBMUN BNATOO S\ (M+A)

99.9 Figure 7 DISTRIBUTION OF MAXIMIN (R+M)/2 OCTANE NUMBER REQUIREMENTS 운 1992 TOTAL VEHICLES PERCENT SATISFIED S FIRM FUE. - 163 VEHICLES FIRM FUE. - 163 VEHICLES FIRM FUE. - 179 VEHICLES ജ Q 8/ (H+M) \2 OCTANE NUMBER

99.9 Figure 8 Distribution of Maximum fibru fuel (R+M)/2 octane number requirements 1992 AND 1991 TOTAL VEHICLES PERCENT SATISFIED ය 1992 - 183 VEHICLES 1991 - 262 VEHICLES ജ ಜ 18/ (B+M) \S OCIVAE NOMBEH

99.9 Figure 10 DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS 1992 TOTAL CARS PERCENT SATISFIED ല PR FUEL - 145 CAPS FBRU FUEL - 145 CAPS FBRUN FUEL - 141 CAPS S (M+M) / S OCTANE NUMBER

99.9 Figure 12 DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS 1992 TOTAL TRUCKS AND VANS PERCENT SATISFIED FBRU FUEL - 38 THKS/VANS FBRU FUEL - 38 THKS/VANS FBRSU FUEL - 38 THKS/VANS റ്റ (H+M) \S OCTANE NUMBER

Figure 13 DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS 1992 TOTAL TRUCKS AND VANS PERCENT SATISFIED ය FIREL - 38 THKS/VANS FIREL - 38 THKS/VANS FIREM FUEL - 38 THKS/VANS ജ ನ S (A+A) \2 OCIANE NUMBER

99.9 Figure 14 DISTRIBUTION OF MAXIMUM FBRU FUEL (R+M) /2 OCTANE NUMBER REQUIREMENTS 1992 AND 1991 TOTAL TRUCKS AND VANS PERCENT SATISFIED 1992 - 38 TRKS & VANS 1991 - 56 TRKS & VANS HEAM) /2 OCTANE NUMBER

99.9 Figure 15 DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS 1992 KNOCK SENSOR VEHICLES PERCENT SATISFIED FIREL - 87 KS VERS FIREU FUEL - 87 KS VENS FIRESU FUEL - 88 KS VENS ജ റ്റ ď

RAHM) / S OCTANE NUMBER

99.9 Figure 15 DISTRIBUTION OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS 1992 KNOCK SENSOR VEHICLES PERCENT SATISFIED FIBRU FUEL - 87 KS VEHS FIBRU FUEL - 87 KS VEHS FIBRUM FUEL - 87 KS VEHS Ŋ RAHM) /2 OCTANE NUMBER

99.9 DISTRIBUTION OF MAXIMUM FBRU FUEL (R+M)/2 OCTANE NUMBER REQUIREMENTS 1992 AND 1991 KNOCK SENSOR VEHICLES PERCENT SATISFIED Figure 17 1992 - 87 KS VEHS 1991 - 105 KS VEHS (H+M) \S OCIANE NUMBER

DISTRIBUTIONS OF MAXIMUM FBRU AND FBRUM (R+M)/2 OCTANE NUMBER REQUIREMENTS DISTRIBUTIONS FOR TOTAL VEHICLES Figure 18 COMBINED 1991 AND 1992 - 445 VEHICLES 434 VEHICLES FBRUM FUEL FBRU FUEL 98 96 90 86 82 94 92 88 84

10 20 30 50 70 80 PERCENT SATISFIED

S

78 10.2

80

S/(M+A)

OCTANE NUMBER

99.8

66

98

95

90

APPENDIX A

PARTICIPATING LABORATORIES

PARTICIPATING LABORATORIES

No. of Vehicles Tested	Eastern Area	East Central Area	No. of Vehicles Tested
5	Exxon Res. & Engrg. Co. Linden, NJ	Ashland Oil Company Ashland, KY	6
15	Mobil Res. & Dev. Corp. Paulsboro, NJ	BP Oil Company Cleveland, OH	30
14	Sun Company Marcus Hook, PA	Ford Motor Company Dearborn, MI	21
30	Texaco Inc. Beacon, NY	Toyota Motor Corp. Ann Arbor, MI	10
		Wash Control Byon	
	Western Area	West Central Area	
32	Unocal Corporation Brea, CA	Amoco Oil Company Naperville, IL	21

APPENDIX B

MEMBERSHIP: 1992 ANALYSIS PANEL

1992 CRC OCTANE NUMBER REQUIREMENT SURVEY

1992 ANALYSIS PANEL

Name .	Company
C. J. Bonés, Leader	Mobil Research and Development Corporation
W. F. Biller	Consultant
R. A. Bouffard	Exxon Research and Engineering Company
C. T. Siambekos	Amoco Oil Company
J. P. Uihlein	BP Oil Cor.pany
T. Wusz	Unocal Corporation

APPENDIX C

DATA ON 1991/1992 FULL-BOILING RANGE REFERENCE FUELS

TABLE C-1

SUPPLIERS' FUEL INSPECTIONS

1991/1992 FBRU FUELS

	Low-Octane Base Blend RMFD 377-91/92	Intermediate- Octane <u>Base Blend</u> RMFD 378-91/92	High-Octane Base Blend RMFD 379-91/92
Laboratory Inspection			
Distillation, °F			
IBP	97	85	97
10% Evap.	141	113	136
30% Evap.	172	151	184
50% Evap.	191	195	232
70% Evap.	213	245	254
90% Evap.	317	336	290
End Point	437	412	386
RVP, psi	7.5	8.9	7.3
Lead, g/gal.	0.000	0.000	0.000
Oxidation Stab., min.	1440+	1440+	1440+
Hydrocarbon Type, Vol. %			
Aromatics	11.2	27.4	43.9
Olefins	8.0	11.8	2.4
Saturates	80.8	60.8	53.7
Research Octane Number	75.8	91.4	104.2
Motor Octane Number	72.7	82.8	92.6
Sensitivity	3.1	8.6	11.6

TABLE C-2

OCTANE NUMBERS AND COMPOSITIONS FOR 1991/1992 FBRU FUELS

Research	Volume Percent		Motor		
Octane	RMFD	RMFD	RMFD	Octane	
Number	<u>377-91/92</u>	378-91/92	379-91/92	Number	Sensitivity
80	76.8-	23.2		75.7	4.3
82	64.2	35.8	~~~	76.8	5.2
84	51.2	48.8		78.0	6.0
85	44.6	55.4		78.6	6.4
86	37.9	62.1		79.3	6.7
87	31.1	68.9		79.9	7.1
88	24.3	75.7		80.5	7.5
89	17.3	82.7		81.2	7.8
90	10.3	89.7	~	81.8	8.2
91	3.3	96.7		82.5	8.5
92		96.3	3.7	82.8	9.2
93		88.6	11.4	83.5	9.5
94		80.9	19.1	84.3	9.7
95		73.1	26.9	85.0	10.0
96		65.2	34.8	85.8	10.2
97		57.2	42.8	86.6	10.4
98		49.2	50.8	87.3	10.7
99		41.0	59.0	88.1	10.9
100		32.8	67.2	88.9	11.1
101		24.5	75.5	89.7	11.3
102		16.1	83.9	90.5	11.5
103		7.7	92.3	91 3	11.7

TABLE C-3

SUPPLIERS' FUEL INSPECTIONS

1991/1992 FBRSU FUELS

	Low-Octane Base Blend	Intermediate- Octane Base Blend	High-Octane Base <u>Blend</u>
	RMFD	RMFD	RMFD
	380 - 91/92.	381-91/92	382-91/92
Laboratory Inspection			
Distillation, °F			0.0
IBP	99	94	96
10% Evap.	142	134	136
30% Evap.	179	170	186
50% Evap.	205	214	232
70% Evap.	238	273	255
90% Evap.	357	366	306
End Point	423	428	403
RVP, psi Lead, g/gal. Oxidation Stab., min.	7.7 0.000 1440+	7.4 0.000 1440+	8.4 0.000 1440+
Hydrocarbon Type, Vol. \$			
Aromatics	18.5	41.1	50.6
Olefins	28.0	21.4	1.8
Saturates	53.5	37.5	47.6
Research Octane Number	76.3	91.7	104.2
Motor Octane Number	70.4 5.9	80.7 11.0	90.5
Sensitivity	3.7		

TABLE C-4

OCTANE NUMBERS AND COMPOSITIONS FOR 1991/1992 FBRSU FUELS

Research	arch Volume Perce		nt	Motor	
Octane	RMFD	RMFD	RMFD	Octane	
Number	380-91/92	381-91/92	382-91/92	Number	<u>Sensitivity</u>
80	79.9	20.1		72.9	7.1
82	67.0	33.0	60 40 th	74.1	7.9
84	53.9	46.1		75.4	8.6
85	47.2	52.8		76.1	8.9
86	40.4	59.6		76.8	9.2
87	33.6	66.4		77.4	9.6
88	26.6	73.4		78.1	9.9
89	19.6	80 - 4		78.8	10.2
90	12.5	87.5		79.5	10.5
91	5.4	94.6		80.2	10.8
92		97.8	2.2	80.7	11.3
93		89.9	10.1	81.5	11.5
94		81.9	18.1	82.2	11.8
95		73.8	26.2	83.0	12.0
96		65.6	34.4	83.8	12.2
97		57.3	42.7	84.5	12.5
98		49.0	51.0	85.3	12.7
99		40.6	59.4	86.1	12.9
100		32.0	68.0	87.0	13.0
101		23.4	76.6	87.8	13.2
102		14.7	85.3	88.6	13.4
103		6.0	94.0	89.4	13.6

TABLE C-5

SUPPLIERS' FUEL INSPECTIONS

1991/1992 FBRUM FUELS

	Intermediate-			
	Low-Octane	Octane	High-Octane	
	Base Blend	Base_Blend	Base Blend	
	RMFD	RMFD	RMFD	
	383-91/92	384-91/92	385-91/92	
Laboratory Inspection				
Distillation, °F				
IBP	97	90	91	
10% Evap.	139	127	129	
30% Evap.	160	154	162	
50% Evap.	180	186	212	
70% Evap.	208	244	246	
90% Evap.	311	331	285	
End Point	425	422	380	
RVP, psi	7.7	8.6	8.0	
Lead, g/gal.	0.000	0.000	0.000	
Hydrocarbon Type, Vol. %				
Aromatics	9.3	25.0	37.5	
Olefins	6.5	8.5	0.8	
Saturates	69.2	51.5	46.7	
MTBE, Vol. %	15.0	15.0	15.0	

TABLE C-6

OCTANE NUMBERS AND COMPOSITIONS FOR 1991/1992 FBRUM FUELS

Research	Volume Percent			Motor	
Octane	RMFD	RMFD RMFD RMFD		Octane	
Number	383-91/92	384-91/92	385-91/92	Number	<u>Sensitivity</u>
84	97.2	2.8		79.7	4.3
85	89.2	10.8		80.1	4.9
86	81.2	18.8		80.6	5.4
87	73.0	27.0		81.1	5.9
88	64.8	35.2		81.6	6.4
89	56.4	43.6		82.1	6.9
90	48.0	52.0		82.6	7.4
91	39.5	60.5		83.1	7.9
92	30.9	69.1		83.6	8.4
93	22.1	77.9		84.1	8.9
94	13.3	86.7		84.6	9.4
95	4.4	95.6		85.1	9.9
96	600 400 MB	93.6	6.4	85.5	10.5
97		84.3	15.7	86.3	10.7
98	·	75.1	24.9	87.1	10.9
99	~~	65.8	34.2	87.8	11.2
100		56.5	43.5	88.6	11.4
101	***	47.2	52.8	89.3	11.7
102	-	37.9	62.1	90.1	11.9
103		28.7	71.3	90.8	12.2
104		19.4	80.6	91.6	12.4
105		10.1	89.9	92.3	12.7

APPENDIX D

PROGRAM

COORDINATING RESEARCH COUNCIL

INCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA, GEORGIA 30346 (404) 396-3400

Not to be Published

PROGRAM

for the

1992 CRC OCTANE NUMBER REQUIREMENT SURVEY

CRC Project No. CM-123-92

JUNE 1992

TABLE OF CONTENTS

TEXT OF	PROGRI	7M	<u>Page</u>
ı.	INTRO	ODUCTION	D-1
II.	GEOGI	RAPHICAL AREAS	D-1
III.	VEHIC	CLES	n-2
IV.	FUELS	S	D-2
v.	TEST	TECHNIQUE	D~3
VI.	DATA	FORMS	D-4
VII.	REPOI	RTING RESULTS	D-4
INDEX O	F TABLI	<u>es</u>	
TABLE	ı -	Limiting Specifications for 1991 and 1992 Full-Boiling Range Reference Fuels	D-5
TABLE	II -	Supplier Inspection Data for 1991 and 1992 Full-Boiling Range Reference Fuels	D-6
TABLE	ıv -	Compositions and Octane Numbers for CRC 1991-92 FBRU Reference Fuels	D-7
TABLE	v -	Compositions and Octane Numbers for CRC 1991-92 FBRSU Reference Fuels	D-8
TABLE	vi -	Compositions and Octane Numbers for CRC 1991-92 FBRUM Reference Fuels	D-9
INDEX O	F ATTAC	CHMENTS	
ATTA	CHMENT	1 - Owner's Questionnaire	D-11
ATTA	CHMENT	2 - Technique for Determination of Octane Number Requirements of bight-Duty Vehicles	D-13
ATTA	CHMENT	3 - Octane Number Requirement Survey Data Form	D-38

I. INTRODUCTION

The 1992 program of the CRC Light-Duty Octane Number Requirement Survey Group will consist of a survey of the octane number requirements of 1992 model domestic and imported vehicles. For the purposes of this program, the designation "passenger vehicles" will include passenger cars, light-duty (<8500 lb/3856 kg GVW) pickup trucks, and vans. Approximately 220 vehicles will be tested. Emphasis will be on testing vehicles representative of new or significantly changed technology or calibration. Unchanged-technology vehicles from the 1991 Survey will be identified by the respective manufacturers, and data on those vehicles from the 1991 Survey will be used to represent these vehicles in the 1992 Survey.

Knocking characteristics will be investigated with four series of reference fuels. Tank fuel knock will also be evaluated. Maximum octane number requirements, whether at maximum-throttle or part-throttle, will be established for each vehicle using high sensitivity unleaded full-boiling range reference (FBRSU) fuels, average sensitivity unleaded full-boiling range reference (FBRU) fuels, primary reference (PR) fuels, and full-boiling range unleaded MTBE (FBRUM) fuels. If the maximum requirement is at maximum-throttle, then part-throttle requirements are investigated with only FBRU fuels of up to, and including, four octane numbers lower than the maximum requirement.

II. GEOGRAPHICAL AREAS

As in previous years, the 1992 Survey will be conducted on a nationwide basis for the US, and will include Canada. Four geographical areas have been established for test vehicle assignment purposes. Coordinators for each of the areas are as follows:

The area coordinators will contact their area participants periodically regarding the progress of the survey. To expedite this, it is suggested that participants send copies of all correspondence concerning the survey to the area coordinators. This program outlines the survey in broad terms. If more detailed information is desired, it is suggested that the participant contact his area coordinator.

III. VEHICLES.

A total of approximately 220 vehicles will be tested in the 1992 Survey.

A detailed breakdown of the specific models and the number of each model to be tested will be circulated to the participants after an estimate of vehicle model production and identification of new technology and calibration has been obtained.

Wherever possible, specific vehicle assignments to individual participating laboratories will be made in a pattern which tends to minimize data bias. This will be accomplished by apportioning cars of a given model among the four geographical areas, and subsequently among the laboratories within each area, in order to minimize the effect of non-random factors on the results of the Survey.

IV. FUELS

A. <u>Full-Boiling Range Reference Fuels</u>

Three full-boiling range reference fuel series will be used to define the vehicle octane number requirements. The three series will be unleaded and of varying sensitivity. One series will be comparable to the average sensitivity of unleaded commercial fuels (FBRU); another series (FBRSU) will be a minimum of two numbers higher in sensitivity than the FBRU fuels; and the third series (FBRUM) will be made by blending the FBRU fuels with 15 volume percent MTBE. The Research octane number (RON) range for the FBRU and FBRSU fuel series is 75 to 104. The Research octane number of the FBRUM fuel series will range higher than the other fuels and will be determined by the Fuel Acceptance Panel.

These fuels will be blended in increments of two RON up to 84, and one RON above 84 from three base fuels for each series. The base fuels are compounded from normal refinery gasoline components. Limiting specifications for each base fuel for each series are shown in Table I. Supplier inspection data are shown in Table II.

Research and Motor ratings will be determined for incremental blends of each fuel series by participants to provide data for establishment of blending curves. The average ratings and blending curves appear in Tables III - V.

B. Primary Reference Fuels

Blends of ASTM-grade isooctane...and normal heptane will be prepared in two octane number increments from 76 to 82, and one octane number increments from 82 to 300.

C. Tank Gasoline

Research and Motor octane ratings will be obtained only on gasoline samples from the tank of vehicles for which an owner's questionnaire has been completed (Attachment 1). Owner's Questionnaire should be obtained if:

- a) vehicle has a regular driver; and
- b) the ignition timing is within $\pm 2^{\circ}$ of the manufacturer's specifications.

V. TEST TECHNIQUE

All tests are to be conducted using the technique entitled, "Technique for Determination of Octane Number Requirements of Light-Duty Vehicles" (CRC Designation E-15-92). A copy of this technique is included as Attachment 2 to this program. Octane number requirement investigations are to be conducted in all vehicles under level road conditions. Any vehicle obviously in poor mechanical condition or with malfunctioning emission control devices should not be considered for test work. The vehicles must have a minimum of 6000 deposit miles (9656 km), and preferably be privately owned and operated. Data with less than 6000 miles will not be analyzed. Vehicles previously used for fuel road octane rating must not be employed in this survey.

Data should be reported on each vehicle tested, even though knock was not encountered on any of the fuels.

The order in which the fuels are to be tested is as follows:

1) Tank fuel;

4) PR;

2) FBRU;

5) FBRUM.

3) FBRSU;

VI. DATA FORMS

The test results on each vehicle will be reported on Data Form ONRS-92 (Attachment 3). Copies of these forms will be mailed to all participants from the CRC office with instructions for their use. Additional instructions are included in the E-15-92 technique.

VII. REPORTING RESULTS

The original data forms for each vehicle tested should be submitted to William F. Biller, 68 Yorktown Road, East Brunswick, New Jersey 08816, as soon as possible, but not later than October 31, 1992.

TABLE I

LIMITING SPECIFICATIONS FOR 1991 AND 1992 FULL-BOILING RANGE REFERENCE FUELS*

	Unleaded Average Sensitivity	Sensitivity		Unleaded Referer	Unleaded High Sensitivity Reference Fuels (FBRSU)	ivity RSU)
Inspection Tests	RMFD 377 RMFD 37	RMFD 378	RMFD 379	RMFD 380	RMFD 381	RMFD 382
ASTM Distillation, ^O F(^O C) IBP, Min. 10% Evap. 30% Evap. 70% Evap. 90% Evap.	90 (32.2) 115-158 (46.1-70.0) 150-190 (65.6-87.8) 195-250 (90.6-121.1) 230-300 (110.0-148.9) 285-374 (140.6-190.0) 437 (225)	90 115-158 150-190 195-250 230-300 285-374 437	90 115-158 150-190 195-250 230-300 285-374	90 115-158 150-190 195-250 230-300 285-374	90 115-158 150-190 195-250 230-300 285-374 437	90 115-158 150-190 195-250 230-300 285-374 437
<pre>RVP, psi (KPa) Lead, g/gal (g/l) Oxidation Stability, Minutes, Min.</pre>	7-9 (48-62) <0.03 (<0.008) 1440	7-9 <0.03 1440	7-9 <0.03 1440	7-9 <0.03 1440	7-9 <0.03 1440	7-9 <0.03 1440
<pre>Hydrocarbon Type, Vol. % Aromatics, Max.** Olefins, Max. Saturates</pre>	20 20 Remainder	35 15 Remainder	55 10 Remainder	35 35 Remainder	45 25 Remainder	65 15 Remainder
Octane Number Research Sensitivity*** Minimum of <u>two</u> <u>units</u> s	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 + 1 8.5 + .5 Ween correspo	104 + 1 11.5 + .5 anding fuels	75 + 1 5.0 + .5 10 of each series.	91 + 1 10.5 + .5 .es.	104 + 1 13.5 + .5 Light Blue
Color	Bronze	Green	אפת		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

All fuels to contain minimum 5 PTB of a 100% active antioxidant and 10 PTB of corrosion inhibitor. No manganese added. Note:

Confirmation of product quality of fuel blends to be approved by a six-laboratory CRC Fuel Acceptance Panel prior to drumming.

- To be compounded from normal refinery components. RMFD-383 through RMFD-385 (FBRUM) are to be blended by adding 15% MTBE (≥ 98% purity) to the FBRU fuels.
 - ** 1% maximum Benzene.
- Sensitivities are shown for the mean Research octane number. * * *

TABLE 11

SUPPLIER INSPECTION DATA FOR 1992 AND 1992 FULL-BOILING RANGE REFERENCE FUELS

		Stivitions appeared Laborated	V+(v)+)*	Unlead	Unleaded High Sensitivity	itivity		15% MTBE	
	Unicaded	Average sen	5151515	Refer	Reference Fuels (FBRSU)	FBRSU	Refer	Reference Fuels (FBRUM)	FBRUM)
Inspection Tests	RMFD 377	STZ RMFD 378 RMF	RHFD 379	RMFD 380	RMFD 381	RMFD 382	RMFD 383	RMFD 384	RMFD 385
ASTH Distillation, OF	1	}	Š	8	76	96	26	8	5
18P	26	â	× ;		427	13,6	139	127	129
10% Evap.	141	113	136	741	1 2	2 4	160	154	162
30% Evap.	172	151	184 24	6)1	2 7	3 5	, t	186	212
50% Evap.	191	195	232	202	412	767	901	3 2	37.6
20% EV25	213	542	254	238	273	255	208	557	042
TON EVAP.	317	336	290	357	366	306	311	331	58 2
yuk Evap. Endooint	437	412	386	423	428	403	425	425	380
							(•	c
•	7 1	α	7.3	7.7	7.4	8.4	7.7	œ.	0.0
RVP, psi	6.7	· ·		000	0.000	0.000	0.00	0000	0.00
Lead, 9/gai	0.00	0.00					,	;	:
Oxidation Stability,	1440+	1440+	1440+	1440+	1440+	1440	•		
Minutes									
:									
Hydrocarbon Type, Vot. X	4		0 27	18.5	41.1	50.6	10.5	59.4	44.5
Aromatics	5.11	÷.72	, ,	, ec	21.4	1.8	7.6	10.0	6.0
Olefins	8.0	9.	*	2	: 1	, ,	0 50	40 4	9.75
Saturates	80.8	8.09	53.7	53.5	37.5	0. /4	6:10	3	
Octane Number	ķ	91.4	104.2	76.3	7.16	104.2	:	:	:
Kesearch		4 0	11.6	5.9	11.0	13.7	:	:	:
Sensitivity	-	9	!						

TABLE III

COMPOSITIONS AND OCTANE NUMBERS

FOR CRC 1992-92 FBRU REFERENCE FUELS

Research	Vo	lume Perc	ent	Motor	
Octane	RMFD	RMFD	RMFD	Octane	
<u>Number</u>	<u>377</u>	378	379	Number	<u>Sensitivity</u>
80	76.8	23.2		75.7	4.3
82	64.2	35.8		76.8	5.2
84	51.2	48.8		78.0	6.0
85	44.6	55.4		78.6	6.4
86	37.9	62.1		79.3	6.7
87	31.1	68.9		79.9	7.1
88	24.3	75.7		80.5	7.5
89	17.3	82.7		81.2	7.8
90	10.3	89.7	بيه څاه هم 🕳	81.8	8.2
91	3.3	96.7		82.5	8.5
92		96.3	3.7	82.8	9.2
93	~~	88.6	11.4	83.5	9.5
94		80.9	19.1	84.3	9.7
95		73.1	26.9	85.0	10.0
96		65.2	34.8	85.8	10.2
97		57.2	42.8	86.6	10.4
98		49.2	50.8	87.3	10.7
99		41.0	59.0	88.1	10.9
100		32.8	67.2	88.9	11.1
101	***	24.5	75.5	89.7	11.3
102		16.1	83.9	90.5	11.5
103		7.7	92.3	91.3	11.7

TABLE IV

COMPOSITIONS AND OCTANE NUMBERS

FOR CRC 1992-92 FBRSU REFERENCE FUELS

Research	Vo	lume Perce	enc	Motor	
Octane	RMFD	RMFD	RMFD	Octane	
Number	380	381	382	Number	<u>Sensitivity</u>
80	79.9	20.1		72.9	7.1
82	67.0	33.7		74.1	7.9
84	53.9	46.1		75.4	8.6
85	47.2	52.8		76.1	8.9
86	40.4	59.6	tray wat 400 fees	76.8	9.2
87	33.6	66.4		77.4	9.6
88	26.6	73.4		78.1	9.9
. 89	19.6	80.4		78.8	9.2
90	12.5	87.5	***	79.5	10.5
91	5.4	94.6	***	80.2	10.8
92		97.8	2.2	80.7	11.3
93		89.9	10.1	81.5	11.5
94		81.9	18.1	82.2	11.8
95	,====	73.8	26.2	83.0	12.0
96		65. <i>6</i>	34.4	83.8	12.2
97		57.3	42.7	84.5	12.5
98		49.0	51.0	85.3	12.7
99		:^.6	59.4	86.1	12.9
100		30	68.0	87.0	13.0
101		23.4	76. 6	87.8	13.2
102	~~~	14.7	85.3	88.6	13.4
103		6.0	94.0	89.4	13.6

TABLE V

COMPOSITIONS AND OCTANE NUMBERS

FOR CRC 1992-1992 FBRUM REFERENCE FUEL

Research	Vo	lume Perce	ent	Motor	
Octane	RMFD	RMFD	RMFD	Octane	
Number	383	384	385	Number	<u>Sensitivity</u>
84	97.2	2.8		79.7	4.3
85	89.2	10.8		80.1	4.9
86	81.2	18.8		80.6	5.4
87	73.0	27.0		81.1	6.9
88	64.8	35.2		81.5	7.4
89	56.4	43.6		82.1	6.9
	48.0	52.0		82.6	7.4
90	40.0	52.0		02.0	7.4
91	39.5	60.5		83.1	7.9
92	30.9	69.1	-*	83.6	8.4
93	22.1	77.9		84.1	8.9
94	13.3	86.7		84.6	9.4
95	4.4	95.6		85.1	9.9
96		93.6	6.4	85.5	10.5
97		84.3	15.7	86.3	10.7
98		75.1	24.9	87.1	10.9
99		65.8	34.2	87.8	11.2
100	~~~	56.5	43.5	88.6	11.4
101		47.2	52.8	89.3	11.7
102		37.9	62.1	90.1	11.9
		28.7	71.3	90.1	12.2
103					
104		19.4	80.6	91.6	12.4
105		10.4	89.9	92.3	12.7

CRC OCTANE NUMBER REQUIREMENT SURVEY

OWNFR'S QUESTIONNAIRE

OWNER:

Your vehicle is being tested for fuel octane number requirements by a Coordinating Research Council activity. To help analyze the data, we would like the person who has recently been driving the vehicle to answer the following questions:

1.	What grade of unleaded fuel was purchased the last two times?
	Regular Mid-Grade Premium
2.	Has any engine knock (ping) been encountered with the fuel that is no in the tank?
	Yes No
3.	If engine knock (ping) has been encountered, did you consider the knock (ping) objectionable?
	Yes No
Vehic:	le Make License No
Vehic	le Identification No.
Compa	ny Testing Vehicle

Attachment 2

TECHNIQUE FOR DETERMINATION
OF OCTANC NUMBER REQUIREMENTS

OF LIGHT-DUTY VEHICLES

(CRC Designation E-15-92)

MAY 1992

I. OBJECTIVE

This procedure establishes the octane number requirements of light-duty vehicles, under defined test conditions. Testing will be conducted with a series of reference fuels using full-throttle and part throttle accelerations and transient-throttle maneuvers.

II. OVERVIEW OF TEST PROCEDURE

A. Test Procedure

The first step in octane rating is to determine the transmission characteristics of the vehicle. This information tells the driver what engine speed and manifold vacuum is used to obtain the engine conditions needed to measure octane requirement. The transmission characteristic information is not part of the octane requirement data, but is obtained as an aid to the driver.

The maximum octane requirement of the vehicle is the highest octane number fuel in a fuel series which causes borderline knock in at least one engine condition. When the highest knocking fuel causes above-borderline knock, the maximum octane requirement is intermediate between that fuel and the next highest non-knocking fuel. A maximum octane requirement is determined on each of the fuel series. The part-throttle requirement on the FBRU fuel series is investigated and reported in the octane number interval up to four numbers less than the wide-open-throttle requirement.

B. Data Forms

Data Form ONRS-MY* consists of four sides: A, B, C, D. Side A includes company information, vehicle data, weather data, knock data on tank fuel, and the octane number requirement summary. Completion of the octane number requirement summary is discussed in Section IX. Side B has a table for transmission characteristic information. This information is located for convenient reference during the octane rating procedure. Side B also has a check list of items to be used during vehicle preparation. Side C is used during the octane rating procedure to record the data from all accelerations, whether they give knock or not.

^{*}MY = current model year

Side D continues the data from side C. It also contains footnote references for the entire form and space for any comments the rater wishes to make. If the rating procedure requires more space for data than is provided in sides C and D, additional C and D sides should be used.

A completed Owner's Questionnaire Form ONRS-MY, Side E should be obtained if the vehicle has a regular driver and the engine spark timing has not been adjusted for testing.

III. TEST PREPARATION

The vehicle must be prepared to operate as the manufacturer intended, but with an auxiliary fuel system. Care should be exercised when preparing the vehicle for testing to ensure that the test reflects normal operating conditions.

A. Vehicle Inspection

Vehicles should be inspected to ensure that engine operation is correct. A list of required items to check is included on ONRS-MY, Side B. This list is a guide only. Individual laboratories may choose to check additional vehicle characteristics.

B. Test Equipment Installation

A calibrated tachometer graduated in 100 rpm (or smaller) increments and capable of indicating engine speed from 0-5000 rpm shall be installed on the vehicle. Analog tachometers are preferable.

One calibrated vacuum gauge, graduated in one-half inch of mercury (or smaller) increments and capable of indicating vacuum from 0-24 inches of mercury (0-31 kPa) shall be connected to the intake manifold. For vehicles with turbochargers or superchargers, a compound vacuum/pressure gauge should be used; the pressure side of the gauge should be capable of indicating pressures up to 15 psig (103 kPa).

An auxiliary fuel system shall be provided to supply test fuels to the engine. Fuel pressure and fuel line size should meet manufacturer's specifications. Auxiliary fuel systems are fuel-systemtype-specified and instructions are given in Appendix A.

The vehicle's evaporative emission canister should be disconnected and plugged at the outlet to the engine. A slave canister that is clear of residual vapor should be installed on the vehicle, and normal engine connections should be made. The original vehicle canister must be left in place, and the line from the tank must remain connected to it. Connections need not be made between the slave canister and the auxiliary fuel system.

C. Data Recording

Record vehicle identification number and emission control type, Federal, Altitude, California, or Fifty-State. Fill in headings on Data Form ONRS-MY, Sides A and C. Ford emission calibration numbers are to be recorded.

Record basic spark timing before adjustment to manufacturer's specifications.

For vehicles with owner questionnaire completed for the ONRS, a sample of the tank gasoline shall be withdrawn for determination of Research and Motor octane number ratings. If insufficient fuel is available, omit this step and tank fuel observations.

IV. TEST CONDITIONS

All octane number requirements will be determined under level road acceleration conditions. Noise in the passenger compartment should be similar to noise encountered during normal road conditions. Windows should be closed or sealed, and the radio should be off. If testing is to be conducted on a chassis dynamometer, coastdown and/or acceleration data should be used to determine dynamometer load (level road conditions).

Tests will be conducted in moderately dry conditions, preferably at ambient temperatures between 60°F (16°C) and 90°F (32°C). Tests should not be conducted during periods of high humidity such as prevail when rain is threatening or during or immediately after a rain storm. Laboratories with control capabilities should target for 70°F (21°C) air temperature and 50 grains of water per pound (7.14 gm/kg) of dry air whenever possible. Record temperature, pressure, and humidity on the data form.

A procedure to stabilize vehicle operating temperatures and to acclimate the engine control system to the test fuel is described below. The warm-up and stabilization cycle should be a replicate of the first 505 seconds of the Federal Test Procedure (FTP) cycle. It should be initiated with the ignition key in the off position for five seconds. The ignition key should be returned to the off position for five seconds at the completion of the warm-up and stabilization cycle. Vehicles should be driven through the warm-up and stabilization cycle three times in order to achieve a ten-mile warm-up. tial vehicle warm-up will be conducted with tank fuel if an owner's questionnaire is present. Otherwise, the initial warm-up should be conducted with a non-knocking hydrocarbon-only fuel. Following the tank fuel rating, the vehicle should be re-stabilized with two 505-second cycles using a non-knocking hydrocarbon-only fuel. Because the stoichiometry of the FBRUM fuel .s significantly different from the other test fuel series, the warm-up and stabilization procedure should also be conducted between the PR and FBRUM fuels series. A non-knocking FBRUM fuel should be utilized for warm-up and stabilization. A 15 volume percent MTBE and non-knocking hydrocarbon blend can be substituted for the FBRUM fuel for warm-up, if fuels are short.

During the warm-up period, the general mechanical condition of the vehicle should be checked to ensure satisfactory and safe operation during test work.

Air-conditioned vehicles will be tested with air conditioner turned ON in the normal mode, set at a comfortable temperature, with <u>low</u> fan.

V. FUELS

Octane number requirements are determined using the vehicle's tank fuel, and four reference fuel series.

Vehicle tank fuel is tested to obtain a preliminary indication of the vehicle octane number requirement. It will also be octane-rated and data included on Data Form ONRS-MY, Side A, if an Owner's Questionnaire Form ONRS-MY, Side E has been completed.

Octane number requirements are also determined using four reference fuel series. Two are designed using typical refinery components and are blended from three base blends in one or two Research octane numbers (RON) increments.

Full-Boiling Range Unleaded (FBRU) fuels are blended to a typical octane sensitivity. Octane sensitivity is defined as the difference between the fuel's RON and Motor octane number (MON) ratings.

Full-Boiling Range Sensitive Unleaded (FBRSU) fuels are blended to a target sensitivity two octane numbers higher than the FBRU fuel.

Full-Boiling Range Unleaded MTBE.(FBRUM) fuels are blended by adding 15 volume percent MTBE to the FBRU fuels.

Primary Reference (PR) fuels comprise the fourth reference fuel series and are a volume blend of two components, isooctane and normal heptane. FR fuels are blended in one or two octane number increments, and by definition have zero sensitivity. PR fuels are defined in ASTM D2699 and D2700 test procedures.

Fuels are tested in a specific order. Tank fuel is tested first. The reference fuels are then tested in the following order: FBRU, FBRSU, PR, FBRUM.

VI. DETERMINATION OF AUTOMATIC TRANSMISSION CHARACTERISTICS

Automatic transmission vehicles should be tested with the gear selector in the top forward gear, normally found to the right or below neutral; top gear should not be locked out unless noted otherwise by the manufacturer. Transmissions equipped with automatic overdrive should be operated in overdrive unless noted otherwise by the manufacturer. Transmissions equipped with power/normal selection should be operated in the normal position.

Do not use brakes, turn signals, or hazard flashers during accelerations, as these may affect electronic engine controls.

Determine the minimum road speed for converter clutch applications in each gear by gentle acceleration from the minimum speed to obtain the gear until the converter clutch engages. Record manifold vacuum, engine rpm, and vehicle speed on Data Form ONRS-MY, Side B.

Obtain the transmission downshift characteristics to define the detent curve for the gear/converter clutch combination.

- Starting from a constant speed of 25 mph (40 kph), open the throttle until downshift occurs. Observe manifold vacuum and engine rpm.
- 2) Repeat Step 1 at higher vacuums until a vacuum is found which does not cause downshift. Record vacuum and rpm.
- 3) Repeat Steps 1 and 2, starting, in succession, from 35, 45, 55, and 65 mph (56, 72, 88, and 105 kph), and in all available gear/converter clutch combinations available at each speed.

VII. DRIVING PROCEDURES

Octane number requirements will be evaluated under both full-throttle and part-throttle accelerations. The vehicles will be evaluated to determine the transmission gear position and throttle position of maximum knock intensity, which is the critical operating condition.

A. Manual Transmissions

Accelerations will not be made in all transmission gears. Accelerations and critical vacuum/pressure determinations will be investigated per the following gear selection table:

5-speed 4th and 3rd gears 4-speed 4th and 3rd gears 3-speed 3rd and 2nd gears

Accelerations will start from the lowest speed from which the vehicle will accelerate smoothly or 25 mph (40 kph), whichever is higher.

Full-throttle accelerations are made with the throttle fully depressed.

Part-throttle accelerations are made with the throttle depressed at least one inch Hg (3.3 kPa) higher than the full-throttle manifold vacuum/pressure. Part-throttle accelerations start at the minimum obtainable speed in the test gear to 70 mph (113 kph), or until the vehicle ceases to accelerate reasonably. Part-throttle accelerations to measure vehicle octane number requirements are performed at critical vacuum/pressures.

To obtain critical part-throttle vacuum/pressure, operate at constant speed road load at 25, 35, 45, 55, and 65 mph (40, 56, 72, 88, and 105 kph) incremental speeds. At each speed, move the throttle from road load vacuum to the positions described below:

For naturally-aspirated vehicles, one inch Hg (3.3 kPa) above full-throttle vacuum;

For turbocharged vehicles, one inch Hg (0.5 psig or 3.3 kPa) below maximum boost.

The throttle movement from road load to the prescribed position should take place in approximately three seconds. This procedure is called fanning. If knocking occurs within any of the vacuum/pressure ranges, establish the manifold vacuum/pressure which gives maximum knock intensity. This is the critical vacuum/pressure to be used for all subsequent constant-vacuum/pressure part-throttle accelerations.

The critical part-throttle vacuum/pressure may be different for other fuel series and must be reinvestigated for each series.

Use of vehicle brakes must be avoided.

B. Automatic Transmissions

Accelerations must be made with the selector in the top forward gear, normally found to the right or below neutral; top gear should not be locked out. Transmissions equipped with electronic overdrive should be operated in overdrive. Transmissions equipped with power/normal selections should be operated in the normal position.

Accelerations will not be made in all transmissions gears. Accelerations and critical vacuum/pressure determinations will be done as shown in the following gear table. If a particular gear/lock-up combination cannot be obtained, it will not be tested.

Type	Gears to be Tested				
4-speed with torque converter lock-up	4th gear, converter clutch engaged 4th gear, converter clutch disengaged 3rd gear, converter clutch engaged 3rd gear, converter clutch disengaged 2nd gear, converter clutch disengaged				
4-speed without torque converter lock-up	4th gear 3rd gear 2nd gear				
3-speed with torque converter lock-up	3rd gear, converter clutch engaged 3rd gear, converter clutch disengaged 2nd gear, converter clutch disengaged				
3-speed without torque converter lock-up	3rd gear 2nd gear				

Accelerations in each of the transmission gears or gear/converter clutch combinations specified above will start from the minimum obtainable road speed and continue until maximum test speed is obtained or, in the case of part-throttle, the vehicle ceases to accelerate reasonably. Minimum obtainable road speeds were established when automatic transmission characteristics were investigated in Section VI. Maximum test speed is 70 mph or a road speed corresponding to 750 rpm above maximum torque, whichever is lower. If the transmissions downshifts, abort and start the acceleration again.

Full-throttle accelerations are made with the throttle depressed in the widest throttle position that does not cause the transmission to downshift or the torque converter clutch to disengage. These accelerations are made following the speed-vacuum/pressure curves established in Section VI.

Part-throttle accelerations are made with the throttle depressed at least one inch Hg (3.3 kPa) higher than the full-throttle manifold vacuum/pressure. Part-throttle accelerations start at the minimum obtainable speed in the test gear to 70 mph (113 kph), or until the vehicle ceases to accelerate reasonably. Part-throttle accelerations to measure vehicle octane number requirements are performed at critical vacuum/pressures.

The critical part-throttle vacuum/pressure investigations will be conducted in the two highest transmission gear positions with the available combinations of converter clutch locked or unlocked. Investigation of critical condition should start with the highest transmission gear with converter clutch engaged. Begin from road load speed of 25 mph (40 kph) or minimum obtainable road speed for the gear/converter clutch combination. Continue the investigation at speeds of 35, 45, 55, and 65 mph (56, 72, 88, and 105 kph), if obtainable.

At each speed, move the throttle from the road-load vacuum/pressure to the detent or torque converter declutch position described below. This throttle maneuver should be accomplished in about three seconds, and is called fanning.

- For naturally aspirated vehicles, one inch Hg (3.3 kPa) above:
 - a. detent vacuum for automatic transmissions without converter clutches;
 - b. the minimum vacuum at which the converter clutch disengages for so-equipped automatic transmissions.
- 2. For turbocharged vehicles, one inch Hg or 0.5 psig (3.3 kPa) below:
 - a. maximum boost at detent for automatic transmissions without converter clutches;
 - b. maximum boost or 0.5 prig (3.3 kPa) above the minimum vacuum at which the converter clutch disengages for so-equipped automatic transmissions.

If knocking occurs within any of the vacuum/pressure ranges, establish the manifold vacuum/pressure which gives maximum knock intensity. This is the critical vacuum/pressure to be used for all subsequent constant-vacuum/pressure part-throttle accelerations.

The critical part-throttle vacuum/pressure may be different for other fuel series and must be investigated for each series.

If knock is encountered during the fanning procedure but not during the constant-vacuum/pressure part-throttle accelerations, it should be recorded as tip-in.

Use of vehicle brakes must be avoided

VIII. TEST PROCEDURE

A. Fuel Changeover

To eliminate contamination of the new fuel with residual amounts of the previous fuel, fuel-injected systems should be flushed once with the new fuel and carbureted systems should be flushed twice. Fuel-handling procedures for vehicles equipped with fuel injection systems are explained in Appendix A.

Make one full throttle acceleration after the fuel change, unless the fuel is being changed to an oxygenated fuel, in which case two 505-second Federal Test Procedure cycles should be performed.

B. Determination of Knock Intensity

Spark knock is the noise associated with the autoignition* of a portion of the fuel-air mixture ahead of the advancing flame front. It is recurrent and repeatable in terms of audibility and fuel octane quality. This includes knock occurring when going from road load to other operating conditions (e.g., tip-in, etc.)

^{*}Autoignition: The spontaneous ignition and the resulting very rapid reaction of a portion or all of the fuel-air mixture. The flame speed is many, many times greater than that which follows normal spark ignition. There is no time reference for autoignition.

Borderline knock is spark knock of lowest audible intensity of at least three pings, and over a range of engine speed of 50 rpm or more, all being repeatable during subsequent accelerations and being sensitive to fuel octane.

No knock means either no audible knock or knock less than borderline intensity.

Above-borderline knock means spark knock of greater audible intensity (louder) than borderline and sensitive to fuel octane quality. There is no restriction on number of pings.

Knock-in is the rpm at which knock is first encountered. Knock-out is the rpm at which knock is last encountered.

Maximum octane requirements will be established by evaluating the occurrence of knock in terms of knock intensity: "N" for none, "B" for borderline, and "A" for above borderline. Establishment of representative knock intensity for a given fuel will be accomplished with a maximum of three (3) rated accelerations. Coastdown time between the end of one acceleration and the beginning of the next should be consistent and a minimum of twenty (20) seconds. As defined below, the first two duplicating accelerations are sufficient with "N" and "B" intensity.

"A" knock intensity must not be maintained during an acceleration. If "A" knock intensity occurs, back off the throttle from decent, maintaining "B" level knock by approaching the detent curve as knock fades. Do not duplicate this acceleration. Testing will continue with a higher octane number fuel in that series.

Maximum Octane Number Requirement Determination

Accel	eration N	umber	Representative Rating
1	2	<u>3</u>	
N	N	-	N
N N	B B	N B	N B
B B	N B	B -	B B
В	A	-	A A
A	-	_	n

C. Tank Fuel

Knock on tank fuel is determined for those ONRS vehicles which have a completed owner's questionnaire. Investigate for full-throttle and part-throttle knock in each of the gears or gear/converter clutch combinations shown in the transmission characteristics table in Section VII A and B. Record knock intensity, engine speed, and manifold vacuum/pressure at each operating condition.

D. FBRSU, PR, and FBRUM Fuel Series

The test procedures used for the FBRSU, PR, and FBRUM fuel series are the same. All three fuel series are tested after the FBRU series, with the FBRUM fuel series tested last. Knock is investigated in all fuel series in each of the gears or gear/converter clutch combinations shown in the transmission characteristics table in Section VII A and B.

Estimate which fuel will be just clear of borderline knock. For the FBRSU series, this estimate is based on data from the FBRSU series, while for the PR series, it is based on data from the FBRSU and FBRU series. The steps in determining the octane requirement of the vehicle on these fuel series include several decision points and are illustrated on page 30 in a flow sheet.

E. FBRU Series

Based on tank fuel information, estimate which fuel will be just clear of borderline knock. The flow sheet which gives the steps for octane rating a vehicle on FBRU series begins on page 32. Testing on the FBRU series is more extensive than testing on FBRSU, PR, or FBRUM series. If the vehicle is full-throttle limited, part-throttle conditions are investigated up to four octane numbers below the full-throttle requirement.

IX. DATA SUMMARY

A. Raw Data Entry

The purpose of the raw data record is to allow anyone familiar with the rating procedure to independently determine the actual test performed. The original data will be recorded on Form ONRS-MY, Sides C and D, which is the first and permanent record of the results of the rating. This means that data sheets must not be rewritten or typed. In case an error is made, draw a line through the error. Do not erase. All fuels tested must be recorded on Sides C and D whether or not knock is encountered.

B. Vehicle and Test Condition Data

Vehicle and test condition data are recorded on Form ONRS-MY, Side A. Many of the data required are further explained in the footnotes on Side D. Care should be taken to record data in the units printed on the form or using the codes on the form and explained in the footnotes. Special care should be taken to record the VIN correctly, because this information is crucial to properly assigning the vehicle to the correct Survey vehicle code.

If knock is encountered on tank fuel in more than one throttle and/or gear position, the knocking condition to record is the condition of most intense knock. If maximum— and part—throttle knock are of equal intensity, record the part—throttle condition. If two or more gear/torque converter conditions knock with equal intensity, record the highest gear/torque converter condition. If no knock are encountered, no further data are recorded.

C. Octane Number Requirement Summary

The octane number requirement summary block is on the bottom part of Form ONRS-MY, Side A. The data in this block are derived from the original data on Sides C and D. The summary block provides space for both maximum-throttle and part-throttle requirements for the maximum octane requirement for all vehicles. If both maximum-throttle and part-throttle requirements have been found, record both.

Use proper letter designations (see the footnotes on the data sheet) to designate: (1) requirements outside of the reference fuel limits; (2) FBRU part-throttle requirement more than four numbers below maximum; and (3) all other cases for which the octane number requirement has not been determined. Note that in the case of a converter-clutch-equipped vehicle, test gear numbers should indicate whether the converter clutch was locked or unlocked. This should be done for all gears. Note also that in the case of turbocharged or supercharged vehicles, a manifold pressure above atmospheric is indicated as a negative number in units of psig.

When deriving summary data from the raw data, the following guidelines shall be used.

1. If the knock intensity of the highest reference fuel giving knock is borderline, the requirement shall be reported as the octane number of that fuel.

- 2. If the knock intensity of the highest fuel giving knock is above borderline, the requirement shall be reported as the mid-point between the octane number of the fuel giving knock and that of the next higher fuel.
- 3. If the octane number requirement in high gear is equal to the requirement in a lower gear, report the highest gear data. Locked condition is higher than unlocked.
- 4. For part-throttle requirements, report the data from the critical manifold vacuum/pressure observations.

I. GLOSSARY TERMS

A above-Borderline Knock (see Section VIII B)

B = Borderline Knock (see Section VIII B)

BTDC = Before Top Dead Center

Critical Manifold Vacuum/Pressure = the manifold vacuum/pressure which gives maximum knock intensity during a P/T acceleration (see Section VII)

Detent = Throttle position at any speed which is at the point of
 incipient downshift. (see Section VI)

EGR Valve = Exhaust Gas Recirculation Valve

FBRU = Full-Boiling Range Unleaded Average Sensitivity Fuel (see Section V)

FBRSU = Full-Boiling Range Unleaded High Sensitivity Fuel (see Section V)

FBRUM = Full-Boiling Range Unleaded Average Sensitivity (FBRU) Fuel with 15 volume percent MTBE splash-blended into it (see Section V).

F/T = Full-Throttle (see Section VII A)

Gr/lb = Grains of water per pound of air

GVW = Gross Vehicle Weight

Hg = Mercury

kg = kilogram

Km = Kilometers

Knock-In * the rpm at which knock is first encountered (see Section
VIII B)

Knock-Out = the rpm at which knock is last encountered (see Section
VIII B)

kPa = kilo Paschal

kph = kilometers per hour

lb = pound

MAX = Maximum

Maximum Requirement/Maximum Octane Number Requirement = the highest octane number fuel in a fuel series which causes borderline knock in at least one engine condition (see Section II A)

MON = Motor Octane Number

mph = miles per hour

N = No Knock (see Section VIII B)

ON = Octane Number

PCV Valve = Positive Crankcase Ventilation Valve

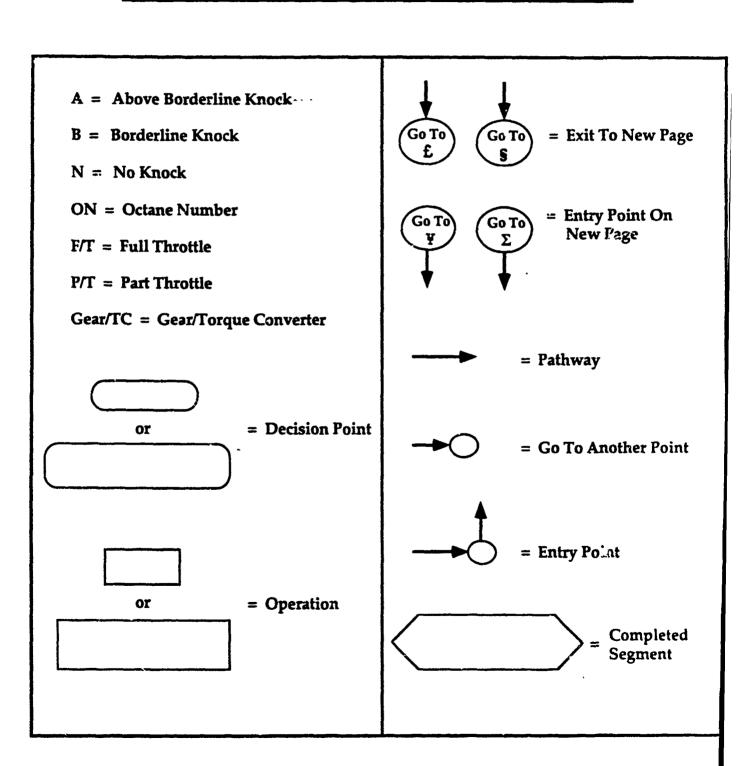
PFI = Port Fuel Injection

PR = Primary Reference Fuel (see Section V)

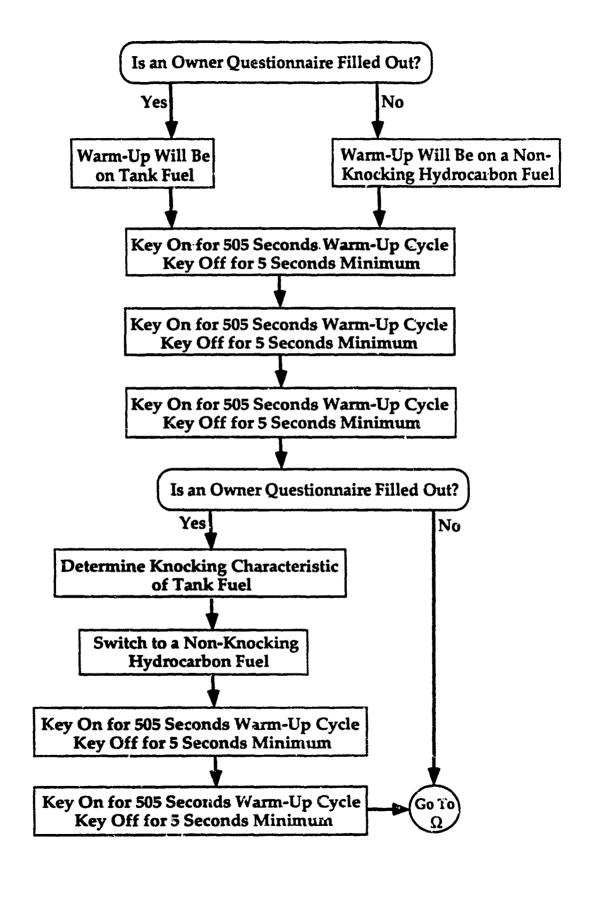
psig = pounds per square inch gauge

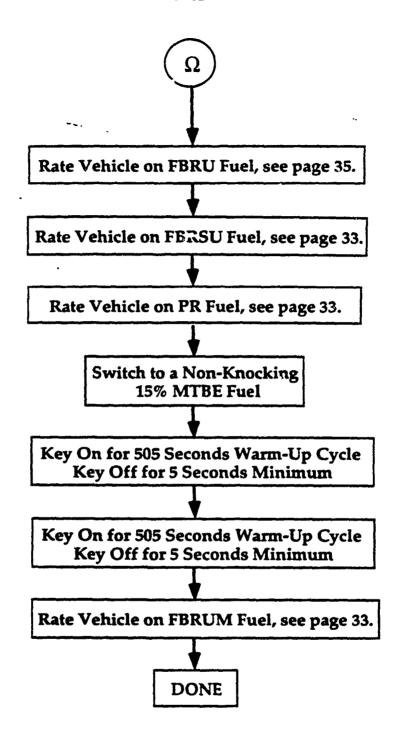
P/T = Part-Throttle (see Section VII A)

RON * Research Octane Number

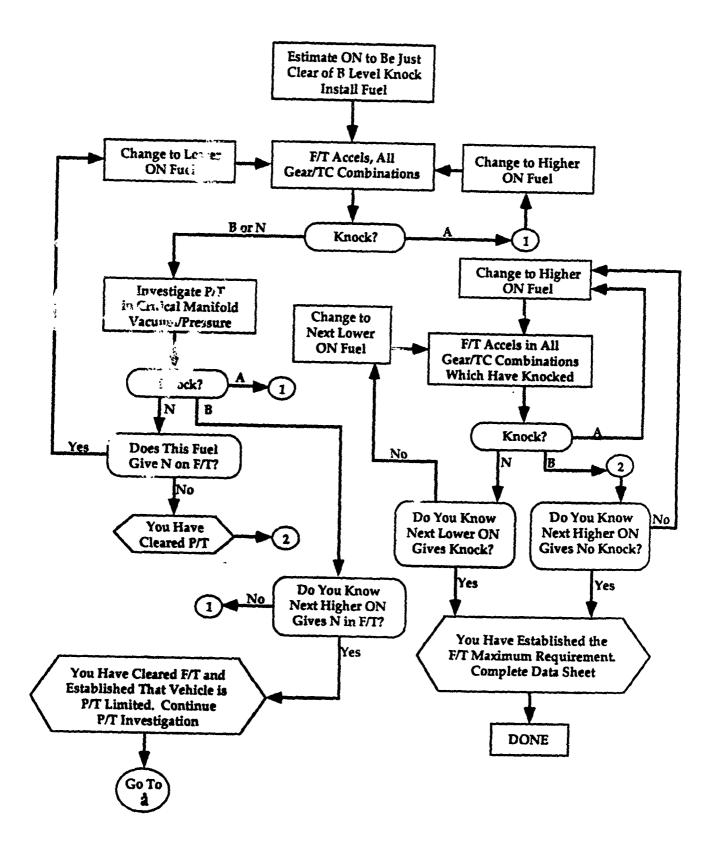

RPM = Revolutions per minute

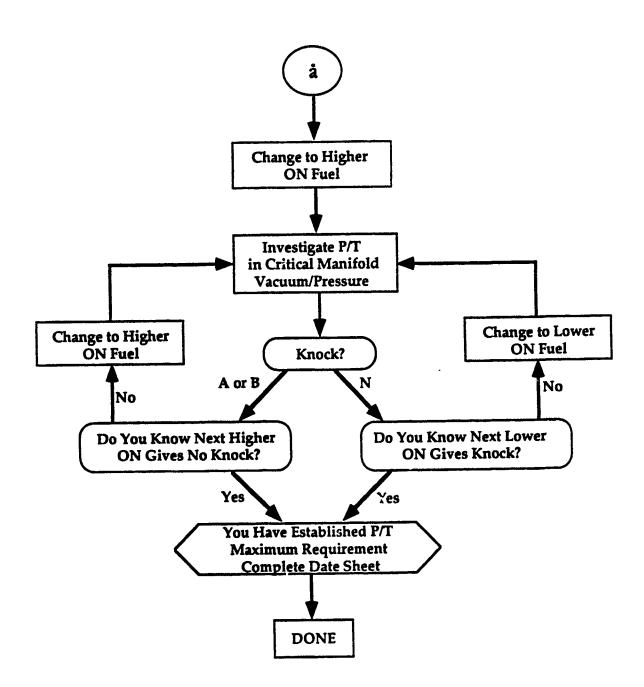
TBI = Throttle-Body Fuel Injection

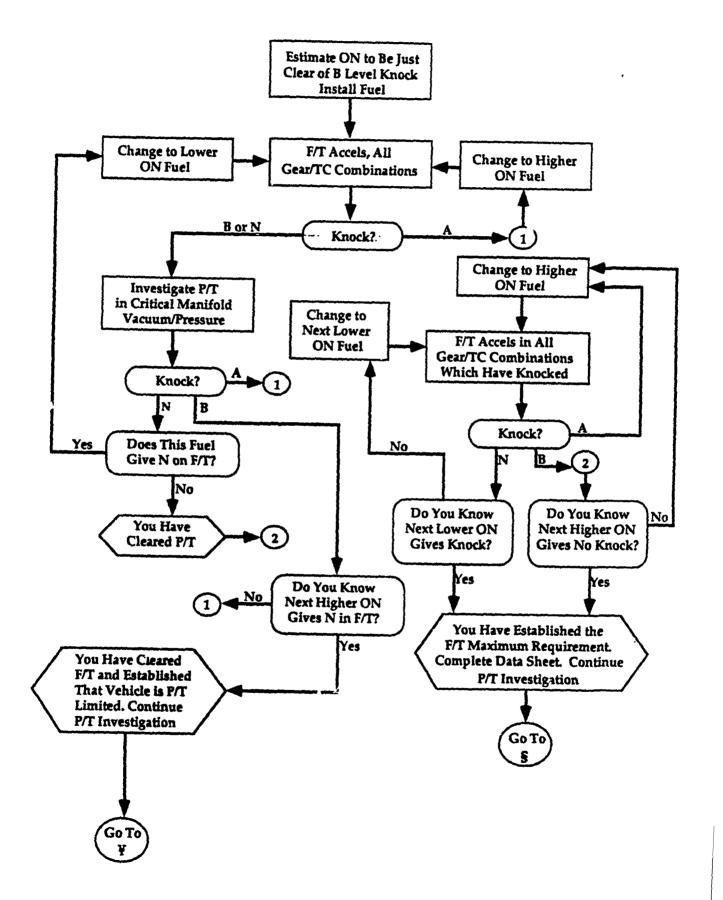

TC = Torque Converter


TDC = Top Dead Center

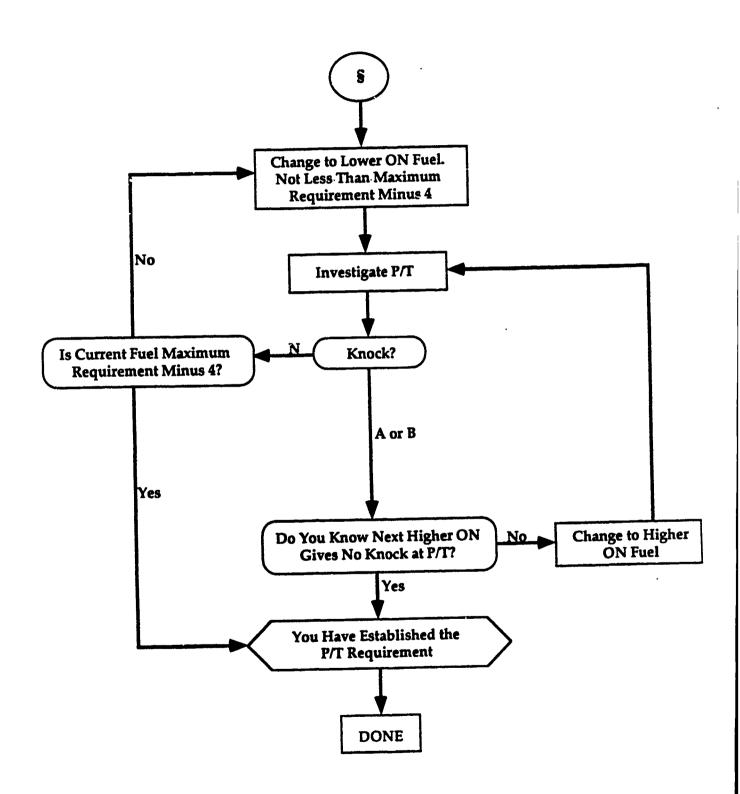
DEFINITIONS AND DESCRIPTIONS FOR OCTANE TEST PROCEDURE GUIDE

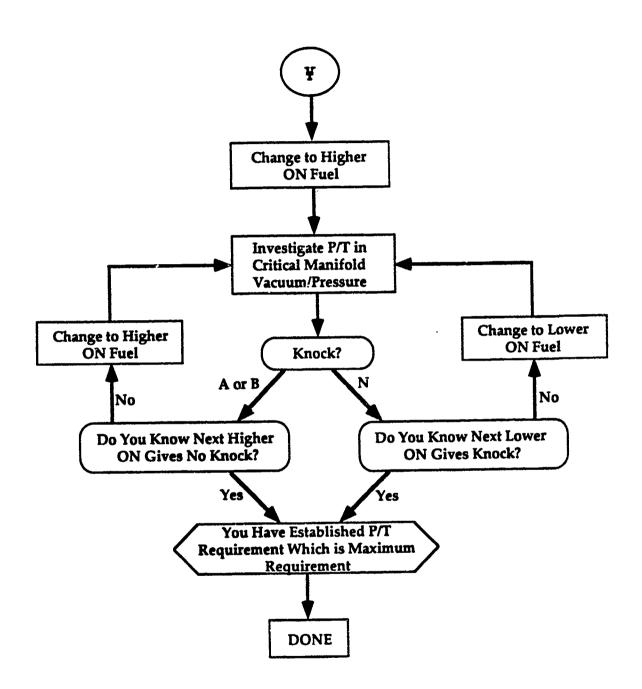



TEST PROCEDURE OVERVIEW



OCTANE TEST PROCEDURE GUIDE FOR FBRSU, PR, AND FBRUM FUEL SERIES




OCTANE TEST PROCEDURE GUIDE FOR FBRU FUEL SERIES

P/T Investigation For Vehicles With Maximum Requirement at F/T

Investigation of Maximum Requirement at P/T for P/T Limited Vehicles

1992 CRC OCTAME NUMBER REQUIREMENT SURVEY - 1992 MODEL VEHICLES

Sheet	of	Sheet

Company:	Date:	Tes	t ation (R/C):	(1)*	
Primary Contact:		Pho	ne: <u>()</u>		
Driver:	Observe	er:			
TO BE FILLED IN BY CRC: Observ. No.	Veh. (Code:	VIN Digit:	Owner:	
VEHICLE DATA Vehicle Make:	Mc	odel:			
Engine Type:(2)* V.1	N.: _ _ _	_	_ _ _ _		
Engine Calibration (Ford):	Li	cense No.:			
Knock Sensor (Y/N): En	splacement (Liters):		Compression Ratio	·	;)
Transmission (A/M):(6)	No. of Speeds:	(7) Con	verter Clutch (Y/N):	
Spark Advance (Degrees BTDC) (8):	As Received:	As T	ested:		
Air Conditioning (Y/N):	Odometer (Mi	les):			
WEATHER Ambient Temperature (°F):	Barometer ("	Hg):	Humidity (Gr	/Lb):	
VEHICLE SOURCE Owner-Operated:	Rental:	Other:		_	
TANK FUEL DATA Customer Knock (Y/N/O)				or Octane No	
):Th				
RPM @ Max. Knock Inter	sity: Ma	n. Vac. ("Hg/ps	ig): ⁽¹³⁾		
MAXII	LIM OCTANE NUMBER REQUIR	EDENT SUMMARY		1	
! FULL-YHROTTLE R	QUIREMENT !	PART-	THROTTLE REQUIREMEN	IIT I	
	RPM Manifold !	· · · · · · · · · · · · · · · · · · ·	RPM	Manifold !	
	Max. Vacuum t	Research	Test @ Max	Vacuum	
Fuel ! Oct. No. Gear	nock ("Hg/psig) !	Oct. No.	Gear Knock	("Hg/psig)	
(15) (12)	(13)	(15)	(12)	(13)	
FBRSU !	!	 -		, ,	
FBRU !	·	·			
PR !	! !	·		·	
FBRUM i	! !	·_			
1	i				

^{*} See Side D for explanatory legend.

TRANSMISSION DOWNSHIFT CHARACTERISTICS

	4th Locked Overdrive			4th Gear		3rd Locked							
mph	Man. Vac./psig	RPM	mph	Man. Vac./psig	RPM	moh	Man. Vac./psig	RPM					
		1	l					1					
		1	}			ľ		1					
		1	1					1					
1		1		1		l							
		!				I							
		ł	1			1							
-		1				1							

[3rd Gear			2nd Locked		Znd Gear							
mph	Han. Vac./psig	RPM	mph	Man. Vac./psig	RPM	mph	Man. Vac./psig	RPM					
	1	l	l i		l			1					
	1	l	1 1					1					
	1	l			1			l					
	l	ı	1 1			i I		l					
		l_						1					
		ı	1 1		1			1					
	l	ı				1		1					

VEHICLE	INSPECT	ION LIST
---------	---------	----------

 vacuum Lines - Good Condition and Appropriately Connected	 Crankcase Oil Level
 Air Pump Hoses - Good Condition and Appropriately Connected	 Conlant Level
 PCV Valve Functioning	 Automatic Transmission Fluid Level
 EGR Valve - Functioning	 Charge Indicator Light or Fluid Leve! of Battery
 Heated Inlet Air - Functioning	 Carbureted Engines - Plug Fuel Return Line if present
 Anti-dieseling solenoid - Functioning and adjusted properly	 Disconnect Fuel Tank Vent Line at Vacuum Cannister
 Tire pressure	 Check Fault Codes

ONRS-92 Side C

Sheet	of	Sh	eets
311661		311	

1992 CRC OCTANE NUMBER REQUIREMENT SURVEY - 1992 MODEL VEHICLES CONTINUATION SHEET

Company:	Date:
Vehicle Hake:	Model:
V-I.N-:	License No.:

TO BE FILLED IN BY CRC: Observation No.:___-

Reference Fuel		Test Gear	Throttle Pos tion		Xax. Kn	ock Inte	nsity	(10)	(10)	Speed Ra	ange, RPM	RPM of
Series	Res. O.N.	No.	(16)	Hg/psig		ccelerat	ion		Final	Kneck	¥nock	⊣ Max. ∣ of
Series	<u> </u>	(12)	l	(13)	1	1 2	ا _ـنــ	3 !	Rating	l In	Cut	intensi
	1	t t				!	1	1		1	}	1
	1	<u> </u>				1		<u> </u>		1		!
	1	l 	<u> </u>	1		1		<u> </u>		1	1	1
	1	l		1		1	1	l		1	1	1
	1	1		1		1				ł	1	1
	!	1	l	1		1				1.	1	1
	I	l		1		1	1]		!		1
	1	1	1			!	1	1				1
	1	l		1	<u> </u>	1	1	١		1		1
	1	1		1		1				l	l	1
	1		[1		1	1	1		İ		1
****	ļ	ı				<u> </u>	1	!		I	1	1
	1	 		1		}	1			i		1
	1					1	ı	١				l
-	1					1				<u> </u>	1	!
·	1	1				1		ı		!	1	1
	l	l ·					l			1	1	
		 				1	ı	l		1	1	
 		 -				ļ	l			<u> </u>	1	
				1		1	1			l		
	1	 I		i		 		I			<u> </u>	-

Refere	nce Fuel	Test Gear	Throttle Position		Max.	Knock	Intens	ity (10)	(10)	Speed I	Range, RPM	RPM of
Series	Res. O.N.	No. No. (12)	(16)	Hg/psig	1	Acce	leration 2		3	Final Rating	Knock	Knock	Max. of Intensity
 	ii		i		 			<u></u>	i	······································	1		1
 	1	'	' ' 		i 			; ļ	 1		1	 	
 	f	1	i (! 			 			· · · · · · · · · · · · · · · · · · ·		1
 	<u></u>		 	·	 	ا 			<u> </u>	·	l 	<u> </u>	
 	<u> </u>	l 	 	· · · · · · · · · · · · · · · · · · ·					<u> </u>		<u> </u>	<u> </u>	<u> </u>
 		<u> </u>			ļ	1					<u> </u>		<u> </u>
i I		!	l 1			1			1		l 		
 									1		l 	i	<u> </u>
 						1			!		1	1	
,		i				ı			1		1	1	1

	LEGEND	COMMENTS
(1)	R = Road; C = Chassis Dynamometer	
(2)	e.g. V8, L4, R for Rotary	
(3)	F = Federal: C = California:	
(3)	A = Altitude; B = "C" and "A"	
	E = Everything	
(4)	T = Turbocharged; S = Supercharged	
(5)	Number of Carb. Venturis or T for	
(4)	throttle body injection or P for	
	port injection	
(6)	A = Automatic; M = Manual	
(7)	Record number of transmission speeds	
(8)	+ = BTDC; - = ATDC	
(9)	Y = Yes; N = No; O = Objectionable	
(10)	N = None; B = Borderline; A = Above Borderline	
-	H = Maximum-Throttle;	
	P = Part-Throttle higher than	
	Maximum-Throttle Requirement	
(12)	If vehicle is equipped with converter	
• - •	clutch, in addition to gear number,	
	indicate U for unlocked and L for	
	locked (e.g., 3U)	
(13)	If boost pressure greater than atmospheric,	
	use Manifold Pressure (psig) with minus	
	sign (-); when fanning, write in "FAN"	
(14)	Applies only to knock-sensor vehicles.	
(15)	If ONR not bounded by test fuels,	
	L = Less than lowest available fuel;	
	H = Higher than highest available fuel.	
	If part-throttle requirement is greater	
	than four numbers below maximum-throttle	
	requirement, enter F.	
	If above does not apply and ONR is not	
	determined, enter U.	
(16)	Record M for Maximum-Throttle, P for Part-	
	Throttle, or FAN if fanning	

APPENDIX A

to the

CRC E-15-92 TECHNIQUE

PROCEDURE FOR SETTING UP VEHICLES
WITH FUEL INJECTION

APPENDIX A

PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS: VEHICLES EQUIPPED WITH FUEL INJECTION

- 1. To run octane requirements on fuel-injected vehicles, it is necessary to install an external fuel supply line with auxiliary electric fuel pump from the reference fuel can to the vehicle fuel system and an external return line back to the reference fuel can.
- There are two types of fuel injection systems: throttle-body injection, and multi-port injection. As a general description, the systems will contain the following parts:

Fuel Tank
High- or Low-Pressure In-Tank Fuel Pump
Fuel Supply Line(s)
In-Line Filter(s)
High-Pressure Chassis-Mounted Pump (not required for all vehicles)
Fuel Rail (to supply multiple injectors on port fuel injection)
Fuel-Pressure Regulator (integral on throttle-body, on fuel rail with multi-port injection; controls pressure at the injectors).

Depending upon the vehicle's specific fuel system and/or tester's preference, installation of the required auxiliary equipment can be accomplished in a variety of ways.

- 3. The auxiliary fuel supply line may be installed anywhere between the fuel tank and the inlet at the throttle-body or fuel rail. The auxiliary fuel return line may be installed anywhere between the fuel-pressure regulator outlet and the tank.
- 4. After connections have been broken, the fuel lines on the fuel tank side should be capped and the vehicle's pump(s) disconnected or disarmed. Alternately, an additional fuel line can be looped between the supply and return lines and the vehicle pump(s) allowed to circulate fuel directly back to the fuel tank. Caution should be exercised if this alternate technique is used. A high pressure will build up in the tank due to the large amount of vapors generated.

The auxiliary fuel supply system must be capable of supplying fuel at a pressure slightly higher than the maximum fuel pressure required (at wide-open-throttle on normally aspirated engines or at maximum manifold boost pressure on turbocharged or supercharged engines) by the particular vehicle being tested. This is to overcome any line losses and thus insure accurate results. This may be accomplished by using an adjustable high-pressure pump, or by using a low-pressure pump to supply fuel to the chassis-mounted high-pressure pump if the testing lab chooses to keep it in the system. A fuel filter may be required between the auxiliary pump and the reference fuel can to protect the pump. The fuel return line should be connected to a tee at the auxiliary pump inlet. The reference fuel can should be vented to outside the vehicle.

It is possible to use three-way valves in the fuel line between the fuel pump and the fuel tank and between the return line and the fuel tank. When used, the operator must change the return line valve to the auxiliary fuel system while the engine is shut down, to avoid building up excessive pressure in the return line which could damage both the fuel-pressure regulator and injection pump.

- 5. When changing from one reference fuel can to another, the following steps should be followed:
 - a. Disconnect fuel inlet line from reference fuel can and run engine a short time; do not run out of fuel since this will introduce air into the fuel injection system and excessive cranking will be raquired to restart the engine.
 - b. With the engine shut off, disconnect the fuel return line from the auxiliary pump inlet and connect it to a slop can. Connect the fuel supply line to the new reference fuel can and run the engine long enough to purge the old reference fuel from the system. The time required will be dependent upon length of added fuel lines, but it will be approximately 30-60 seconds; approximately 1-2 quarts of fuel will be discarded to slop. (1)
 - c. With the engine off, connect the fuel return line to the auxiliary pump inlet. The vehicle is then ready to be tested.
 - d. When changing to the next reference fuel, it is necessary to repeat Steps a, b, and c.

⁽¹⁾ It is critical to circulate an adequate amount of fuel to the slop can to prevent reference fuel contamination.

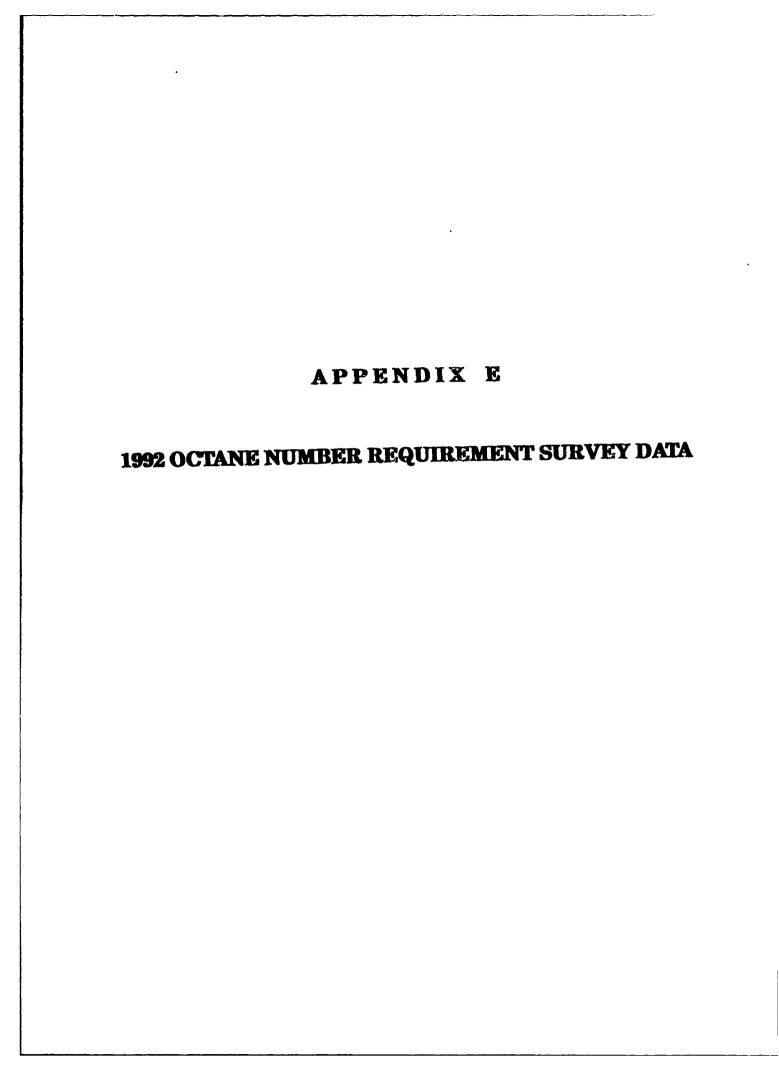
CAUTION

Fuel supply lines remain pressurized long after the engine is shut off; be sure to relieve the pressure before disconnecting fuel lines.

Use fuel lines designed for high pressure. They should be rated for at least 250 psi working pressure and for 1000 psi burst pressure.

The engine and auxiliary fuel pumps should be shut off while changing from auxiliary to tank fuels.

Purging procedures should be followed strictly to preclude reference fuel contamination or discarding more fuel than is required.


Vehicle pump(s) may be disarmed by use of the inertia switch if so equipped. The voltage supplied to the inertia switch may then be used to power the auxiliary pump. When making these electrical connections, do not "splice" into the wire; instead, connect the wire lead to the connector.

Do not disarm the vehicle fuel pump by removing the fuse, since other accessories may be connected to the same circuit; instead, disconnect the fuel pump electrical lead.

Auxiliary fuel return lines should be of a size larger enough to prevent a build-up of back pressure which could prevent the proper operation of the pressure regulator.

Use of the "rolled edge" style hose clamps, such as those made by Chrysler, is recommended to prevent damage to fuel lines.

Note: Diagnostic scanners should not be used while knock testing.

GLOSSARY

(For Appendix E Only)

Passenger car Vehicle Type (TYPE): T Light-duty truck or van Emission Certification (EMCT): A Altitude "C" and "A" California Federal E Everything Knock Sensor (KS): Yes No F/A System (F/A SYS): If single character: T Throttle-body fuel injection P Multiple-port fuel injection # Carburetor where # is no. venturi If two characters, second character is as above, and first character is: T Turbo S Supercharger Displacement (DSP): Engine Displacement in liters Transmission (TRANS): First character: M Manual shift A Automatic shift Second character is number of forward gears Air Conditioner (AIR): Yes N No Spark Advance: Before Top Center After Top Center 1 Tank Fuel Test Fuel: **FBRSU** FBRU

> PR FBRUM

Octane Number Requirements: (expressed as Research ON)

- L Less than lowest available ON for FBRU, FBRSU, and FBRUM fuels and less than 76 for PR fuels
- H Higher than highest available ON for FBRU, FBRSU, and FBRUM fuels and higher than 100 ON for PR fuels
- F Part-throttle requirement greater than four numbers below maximum-throttle requirement

Throttle (THR):

M Maximum

P Part

Gear:

1-6 Manual and Automatic

L Tested in lockup (torque converter engaged)

Manifold Vacuum (VAC):

Inches Hg, positive for vacuum, negative (-) for pressure

Owner-Reported Knock (OWKNK):

Y Yes, Not Objectionable

O Objectionable

N No

Rater-Reported Noise Intensity (KNINT)

N None

B Borderline

A Above Borderline

			VE	HICL	E D	ESCR	RIP	710	N			WEATHE	2	OC	TAN	E NUMB	ER REQ	JIREMEN	NT	DATA			TA	NK eil	FL	INFO	RMATIC	ИС
															MAX	THUH		PAI	श-	THROTT	LE	_					RATER	
ıs.	Y P	M C K	Y	A	:		A I	ADV AS		ODOM			U	ОСТ				ост				0 W K N	ОСТ		I N	H A		
). —	Ε	T S 	S 0	SP S	. c 	.R.	R ~	RCD	TST	MILE	S TMF 	BAROM	HUM L	NO	R 	RPM	VAC	NO	R —	RPM	VAC	K _	RES	MOTR	T !	R R 	RPM	VAC
06	С	FN	T 1	.0 A	3	9.5	Y	+ 5	+ 5	2492	3 81	29.73	93 3	88.0	3	2400	1.0	88.0	3	2400	3.0							
														89.0			1.0	88.0	3	2500	3.0							
														88.0			1.0											
					_	_		_	_					87.0			1.0		_									
06	С	CN	Т 1	.0 A	3	9.5	Y	+ 5	+ 5	1242	5 70	29.93					0.5	86.0	3	2100	1.5							
														90.0			0.5											
														88.0			9.5											
														87.0	_		0.5											
16	C	CN	T 1	.0 A	3	9.5	Y	+ 5	+ 5	840	7 70	29.80					0.5	89.0	3	2300	1.5							
														93.0														
														89.0														
														90.0	3	2400	0.5											
1	С	FN	T 1	.0 A	3	9.5	Y	+ 2	+ 5	2759	3 70	30.23								3000		N	92.3	82.9	N			
													2								1.5							
													4							3040 .								
					_								5								1.5							
1	С	FN	P 1	.3 M	15	9.7	Y	+10	+10	1274	7 70	29.46						80.0				N	92.1	83.2	N			
														80.0				80.0										
														80.0	4	1400	0.2	80.0	4	1500	2.0							
_				_	_								5															
5	С	FN	Т 1	.5 M	15	9.2	Y	+16	+16	1416	4 70	30.10					0.2	88.0	4	2400	2.0							
														89.0			0.2											
														89.0			0.2											
_					_									87.0			0.2											
3	C	FN	T 1	.5 M	5	9.2	Y	+16	+16	789	9 70	29.42						82.0										
														83.0			0.3	83.0	4	2800	1.3							
														86.0	4	1900	0.3											
	_				-					4,70		70.70		L	,	2222												
)7	С	FN	11	.5 M	לו	9.2	Y	+16	+16	1436	6 /	30.20				2000	0.0											
														0,دع			0.0											
														87.0			0.0											
_	_				_									84.0			0.0											
3	С	FN	P 1	.5 A	3	9.3	Y	+10	+10	2481	9 7	29.57				2700	0.6											
														90.5			0.6											
														89.0			0.4											
				_	_									89.5			0.6	_										
24	С	FN	P 1	.5 A	3	9.3	Y	+10	+10	1268	8 74	29.10				3600	0.6	F										
														85.0			0.6											
														86.0			0.6											
	_			_										84.0			0.6	00.0		4/00	. ~							
20	С	FN	P 1	.5 M	15	9.4	Y	+10	+10	806	5 70	29.40				1500	0.3	88.0	4	1600	1.3							
														89.0			0.3											
														89.0			0.3											
													5	89.0	4	1300	0.3											

			VEHI	CLE	DESC	RI	PTIO	N		١	ÆATHE	R		OCTAR	IE NUMI	BER REG	DUIREME	NT	DATA			T	ANK FI	JEL	INFC	ORMAT I	ON
														MAX	IMUM		PA	RT-	THROT	TLE	-					RATER	
08\$.	T E Y M P C X	•	S Y	T R A		A		ANCE AS	ODOM		DADOM		00	G E	004	VAC	OCT		DDW.	VAC	0 W K N		T NO		T E	DDM	1/4.0
NO.				· -	C.R.			121	MILES		BAKUM		NC	_ K	RPM	VAC	NO	· -	RPM	VAC	K _	RES	MOTI		(K 	. 	VAC
60-01	CF	l	P 1.5	M5	9.4	Y	+10	+10	14876	74	29.80					0.0											
															3400 3200	0.0											
																- 0.0											
32-07	CFY	ſΤ	P 1.6	M5	7.9	Y	+12	+12	6107	70	29.64				3400	•••	L				N	91.	0 83.0) N			
								-					L				L										
												4	L				L										
												5	L				L										
29-12	CF	i	T 1.6	A3	9.5	Y	+10	+10	12290	73	29.20					0.5	86.0	30	2300	4.0							
															2700	0.5											
															3400	0.5											
00.44				47	40.7			. 10	27257	70	20.00				2700	0.5	05.0	711	2400	, ,							
08-11	LFF	•	7 1.0	. 43	10.3	•	+10	+10	21331	10	27.77				2050	0.5 2.8			2100	4.0 4.0							
															2600	0.5	70.0	- 50	2100	4.0							
															2500	0.5											
08-21	CFN	i	P 1.6	A3	10.3	Y	+10	+10	22973	71	29.88					0.5	96.0	3 U	2500	5.5							1
												2	98	3.0 30	2600	0.5			2500	5.5							
												4	92	2.0 20	3350	0.5											ı
												5	95	5.0 JU	2650	0.5	95.0	3 U	2500	5.5							j
47-12	CCN	1	1 1.6	A3	8.6	Y	+ 8	+ 8	23408	70	29.92					1.0			3000	7.5							
															2850	1.0	103.0	3L	3250	7.5							
															2600	1.0	07.0	·	2000	7 5							- 1
29-21	r e v		0 1 6		0.3		7	7	15647	73	20.05				3000	1.0 0.8			2900 2100	7.5 5.0							
27-21	CFF	•	7 1.0	, ,,	7.3	, 1	Τ,	Ŧ 1	17047	13	29.03				2000	0.8		_	2700	5.5							- 1
															1900	0.8		, ,,	2100	3.3							ł
															2200	0.8											J
24-01	CF		P 1.6	A3	9.5	Y	+10	+10	11408	66	29.79	62 3	87	7.0 JL	2680	0.5	84.0	3 U	3000	3.5							1
												2	91	i.0 3L	2700	0.5	86.0	3 U	3000	3.5							- 1
												4	83	5.0 3L	2500	0.5	80.0	3 U	2800	3.5							J
															2800				2800	3.5							
29-18	CF	1	P 1.6	A3	9.5	Y	+10	+10	6178	73	29.24						85.0	3 3 U	2400	3.5							- 1
												_			2700												
															3300 2600												
60-04	C E 1		D 1 6		0 5	. v	410	+10	13530	64	20 42																1
50-04	U F I	•		, A4	7.7	, (-10	-10	0556		67,46				2600												1
															2500												
															2800												
60-05	CFI	ŧ	P 1.6	A4	9.5	Y	+10	+10	14486	72	29.80	17 3	8	7.0 31	2600												
												2	2 88	3.0 3U	2600	0.6											
															3500												4
												5	87	7.0 21	2900	0.0											
																											•

			VEHI	CLE	DESC	RI	PTIO	N		1	MEATHER	₹	OC	TAN	E NUME	BER REQ	UIREME	NT	CATA			TA	NK FU	EL	INFO	RHATI	DN
			. — . — <u>. — . — . — . — . — . — . — . —</u>											MAX	IMUM		PA	RT-	THROTT	LE		-	,			RATER	
OBS.	T E Y M P C E T	K	S Y	T R A N S	C.R.	A I		ANCE	ODOM HILES		BAROM		ост		RPM	VAC	OCT NO		RPM	VAC	0 W K N			N	T E	RPM	.VAC
						-								_							-			_			
60-36	CF	N	P 1.6	A 4	9.5	Y	+10	+10	23902	72	29.20					0.6											
l													88.0 87.5			0.4 0.2											
													88.0														
60-07	C E	u	D 1 4		0.5	v	410	+ 10	131/7	70	20.32					0.8											
50 0,	C F	~	F 1.0	74	¥	٠	+10	¥ 10	13147	,,,	عد, دے		87.0			0.0											
													86.0			0.2											
													88.0			0.4											
60-08	C F		P 1 6	. 44	0 5	y	+10	+10	18860	78	20.52					0.0											
33 33	•			7,4	,,,	•	. 10		,,,,,,,,	,,	27.52		89.0			0.0											
:													89.0			0.6											
													88.0			0.0											
60-09	C F	N	P 1.6	A4	9.5	¥	+10	+10	26251	76	29.20					0.4											
		••		•		Ī							89.0			0.5											
													87.0			0.2											
													88.0			0.4											
60-10	CF	N	P 1.6	A4	9.5	Y	+10	+10	27431	76	29.82					0.6											
												2	89.0	3 U	2600	0.6											
												4	89.0	20	3400	0.0											
													88.0			0.4											
32-16	C F	N	P 1.8	M5	9.0	Y	+10	+10	7617	70	29.24	52 3	86.0	4	2000	0.4	85.0	4	4000	2.0	N	90.2	82.8	N			
													86.0			1.0	86.0) 4	4250	2.0							
												4	86.0	4	4000	1.0	85.0) 4	4000	2.6							
													84.0			0.4			2300	2.0							
05-14	CF	N	P 1.8	M5	9.2	Y	+16	+16	12686	70	30.40					0.2			2500	4.0	N	92.3	83.7	N			
													93.5			0.2			4600	4.0							
													91.0			0.2											
													90.5			0.2											
07-09	SF	N	T 1.8	A4	9.7	Y	+10	+10	19810	70	30.47					3.0											
												2	88.0	3 U	2500	3.0											
												4	86.0	30	2600	3.0											
												5	85.0	30	2700	3.0											
28-15	C F	Y	T 1.8	A4	9.2	Y			7768	70	29.14	50 3	89.0	30	2900	0.5	88.0	3U	2800	1.5							
												2	91.0	3 U	3600	0.5											
												4	87.0	4L	1900	1.0											
												5	88.0	4L	1820	1.0											
05-09	ιF	N	P 1.8	A4	8.9	Y	+12	+12	18360	69	29.98	50 3	88.0	20	3400	0.6	F				N	98.9	87.5	N			
												2	90.0	2U	3480	0.6											
												4	86.0	2U	3210	0.6											
													84.0			0.6											
32-06	C F	N	P 1.7	M5	9.0	Y	+10	+10	24757	70	29.28	50 3	87.0	4	2400	0.6	87.0	4	2100	2.0	N	92.0	82.8	N			
													88.0			0.8	88.0	3 4	3650	2.0							
												4	87.0	4	2700	0.8	87.0	4	3650	2.0							
													86.0			0.8	86.0	4	3500	2.0							

			VEH	ICLE	DESC	RIPTIO	K		,	HEATHE	R		OCI	TANI	E NUMB	ER REG	UIREME	NT I	DATA			TA	NK FU	EL 1N	ORMA	TION
										·			ŀ	(AX	IMUM		PAI	RT-	THROTT	LE					RAT	R
OBS. No.	Y M	1 : K	F/A S Y	A N			ANCE	MOOO				U E	OCT NO	E A		VAC	OCT NO	A		VAC	N ·	OCT	NO MOTR	N H A	: \	4 VAC
28-19	C F	 : Y	— — Р 1.	 9 A4	9.5			7553	70	29,30	<u></u>	- 3	92.0	 3U	2700	0.5	89.0	 3u	2600	0.5	-					
	•	•		. ,,,	,	•					-		93.0				•									
												4	92.0	3 U	2600	0.5										
													93.0													
29-05	C F	Y	P 1.	9 A4	9.5	Y		17727	70	29.06							F									
													91.0													
													86.0													
20.04				,				4/000	40	20.07			87.0				_									
29-06	C 1	Ţ	P 1.	y 84	9.5	T		10228	70	29.00			91.0				۲									
													88.0													
													88.0			0.8										
08-17	C F	Υ :	T 1.	9 M5	9.3	Y		10986	83	29.97							76.0	3	2200	2.2						
													84.0			0.5										
												4	76.0	2	4100	0.5	L									
													Ĺ													
28-18	C F	Y	T 1.	9 A4	9.3	Å		7681	70	29.40	50						83.0	3L	1600	1.5						ı
													84.0													
												5	83.0	3L	1000	0.5										
08-09	C F	u	т э.:	7 A 7	3.2	Y		ARCO	01	29 87	111			211	3400	0.5	80.0	31	1950	2.5						
30 07	•	•		• /	,	•		,,,,,	′'				88.0				00.0	-	1750							
													83.0													
													L				L									ĺ
08-22	CF	N	r 2.	0 A3	9.2	Y		14388	72	30.21	26	3	84.0	3L	1850	1.0	82.0	3L	1825	3.5						
												2	85.0	3 L	1850	1.0										
													83.0			0.5										- 1
													84.0			1.0		_								1
47-15	CC	N	T 2.	0 A3	9.2	Y		24125	70	30.00	50						88.0	3L	2000	8.0						- }
													90.0 87.0													1
													87.0													- 1
47-30	СС	Y	P 2.	0 MS	9.5	Y +15	+15	9430	70	29.98	50					0.2	F									
.,									. •		••		86.0				•									
													86.0													1
												5	86.0	4	1100	0.2										Ĭ
05-10	C F	Y	P 2.	0 M5	10.8	Y		18815	70	29.85	50	3	87.0	4	1630	0.4	F									- 1
													88.0													
													85.0	4	1750	0.4										ł
				.					***	00 ==		5			3344	- -	L		4/00							ł
32-13	CF	Y	TP 2.	2 NS	7.8	Y + 9	+ 9	24816	70	29.39	50									1.0	N					
																	90.0 89.0			1.0						
																	88.0			1.0						
													٥٠	•	_, 50		٠.٠	•	,550							Ì

E-07

			VE	HIC	LE	DESCR	RIP	TIO	l		١	ÆATHE	₹		OCT	ANE	E NUKE	ER REQ	UIREME	NT	DATA			TA	NK FUE	L 1)	FORMA1	ION
															М	IAX I	IMUM		PAI	RT-	THROTT	LE	_		·		RATE	R
	Y M		F/A S	1	T R		۸ -		NCE					F U		G E				G E			0 W K	ост		1 1		
OBS. NO.	P C E T				N S					ODOM MILES		BAROM	HUM		OCT NO		RPM	VAC	OCT NO	A R	RPM	VAC	N K	RES	MOTR	N H T R		VAC
08-10	 C F		— — P 2	 .2 .	 A3	9.0	 Y			22629		29.86	 55	 3	91.0	 2U	2700	0.5	90.0	 3U	2300	3.5	-		· —-			
																	3500	0.5			2300	3.5						
														4	90.0	2 U	2675	0.5										
														5	89.0	3 U	2700	0.7										
08-14	C F	N	P 2	.2	A3	9.0	Y			26060	86	29.88	95	3	85.0	3 U	2675	0.6	82.0	3υ	2400	3.5						
														2	87.0	3U	2625	0.6										
														4	84.0	20	2525	0.5										
														5 L					L									
47-09	C C	N	P 2	.2	A3	9.0	Y			15660	70	29.96						1.2	95.0	3L	1200	10.0						
																	2700	1.2										
																	2000	1.2										
																	2700	1.2		_								
47-14	C C	N	P 2	.2	A3	9.0	Y			16076	70	30.04						1.2	99.0	3L	1650	10.0						
																	2700	1.2										
																	1650	1.2										
																	2000	1.2		_								
47-18	C C	N	P 2	.2	A3	9.0	Y			21689	70	29.95	50				2800	1.0	95.0	3L	1800	8.0						
																	2800	1.0										
																	2280	1.0										
00 47				_						***	70	20.00					2800	1.0	04.0	~	2400	7.0						
29-13	CF	N	P 2	، ۲	A.S	9.0	Y			8800	70	29.08						1.0	86.0	30	2600	3.0						
																	2700	1.0										
																	3000	1.0										
30 07				_	47		v			7/25	70	20 /2	50				2500	1.0	96.0	7.	2000	2.0						
28-03	u r	N	P 2	٠	A.)	9.0	T			7625	70	27.46						0.3	00.0	JL	2000	2.0						
																	2700 2600	0.3 0.3										
																	2600	0.3										
28-14		ы	0.2	2	A /.	Ω Ω	v .	.1 E	_11 5	9/41	70	20 30	50					0.5	82.0	711	3800	17						
20-14	C F	K	P 2		A+	0.0	,	T 1.3	713	0401	10	27.37					5000		02.0	30	2000	1.1						
																	2500											
																	2400	0.5										
47-13			b 2	2	A /.	0.5	٧.	-10	+10	16600	70	20 04	44					0.5	81 N	41	2300	2 0						
41-13			P 2		~*	7.3	١	. 10	. 10	10403		27.70					2300		01.0	7.		2.0						
																	2300	0.5										
														5 1		50	2300	0.5										
60-02	r =	: v	p 2	2	& /.	0 5	Ψ.	<u> ቀ</u> 1 በ	+10	13302	75	30 n/.	37			3 11	2300	0.6	83.0	411	2400	2.0						
00-02	٠.	•	, _		~	7.3	•	. 10	. , .	12202	.,	30.04					2100		٠,,,	-								
																	2100											
																	2100											
06-04	C E	: v	p 2	.2	A4	9.5	Y			14874	60	29.85	56						L				N			N		
VU - V4		•	r E		~~	,.,	•			1-014			,,				2600						••					
														4 1					-									
														5 1														
														ا ر	. .													

E-08

	VEHICLE DESCR	IPTION	WEATHER	OCTANE NUMBE	R REQUIREMENT DATA		TANK FUEL INFOR	MATION
				MAXIMUM	PART-THRO	TLE	R/	ATER
OBS. NO.	TE F/A R YM S A	SPARK ADVANCE A I AS AS ODOM AP R RCD TST MILES TM	U MB E	G E OCT A NO R RPM	G E OCT A VAC NO R RPM	N	•	RPM VAC
05-07	CFN P 2.3 A4 9.2	 Y +10 +10 11468 7	70 30.38 50 3	92.0 41 1930	3.0 F		·	
				93.0 4L 2000	2.5			
			4	88.0 3U 2670	1.0			
				89:0 20 3000	1.0			
32-02	C F N P 2.3 A4 9.2	Y +10 +10 11694 7					91.0 82.7 N	
				85.0 2U 4000				
			5	84.0 3U 3000	0.8 84.0 3L 1900	3.0		
07-08	CFN P2.3 A4 9.2	Y + 4 + 4 12228 7	_		0.0			
				87.0 40 2850				
				87.0 4L 2850	0.0			
			5	85.0 4L 2100	0.0			
05-02	CFN P2.3 A3 9.0	Y +10 +10 7405 7	70 30.00 50 3	91.5 3 2800	0.4 91.0 3 3300	5.0		
				93.0 3 3000	0.4 95.0 3 3200	5.0		
				93.0 3 3300	0.4			
50.00				90.0 3 3480	0.4			
28-09	CFN P 2.3 A3 9.0	Y +10 +10 7872 7			2.0 92.0 2 2900	2.0		
				96.0 3 2100 91.0 3 2100	1.0 1.0			
				92.0 3 2100	1.0			
47-08	CCN P 2.3 A3 9.0	Y +10 +10 8353 7			0.8 101.0 3 3300	5.0		
				98.0 3 2200	0.8			
			4	89.0 3 2400	0.8			
			5	93.0 3 2500	0.8			
47-27	CCN P 2.3 A3 9.0	Y +10 +10 11750 7	70 29.99 50 3	92.0 3 2800	0.8 91.0 3 2800	1.8		
			2	94.0 3 3000	0.8			
				90.0 3 2500	0.8			
					0.8			
07-02	CFN P 2.3 A3 9.0	Y U U 1640U /			3.0			
				90.0 3 3200 88.0 3 3500	3.0 3.0			
				88.0 3 2900				
29-20	CFN P 2.3 A3 9.0	Y +10 +10 10848 7			1.0 92.0 3 3000	3.0		
					1.0			
			4	89.0 3 2700	1.0			
					1.0			
08-02	CFY P 2.3 A3 9.5	Y 6192 8						
				91.0 30 2525		5.0		1
				90.0 30 2850				
NP. 40	CFY P 2.3 A3 9.5	v //59 /		92.0 30 2750				
VO* 10	U F T F 2.3 A3 9.3	1 0023 (80.0 20 2575				
				78.0 20 2750				1
				L	L			1
			•		•			

E-09

			V	EHIC	LE	DESCR	IPTI	ON			WEATH	ER ——		00	TAN	E NUME	ER REC	WIREME	NT	DATA		-	TA	NK FU	EL 1	INFO	RMATI	ON
															MAX	IMUM		PA	RT-	THROT	LE						RATER	
	T E Y M		F/A S		T R		SI AD	PARK VANCE	: -				F		G E				G E			O W K	ост	NO	K N	G		
BS. D.	P C E T				N S				MILE		B P Baroi	M HL		OCT NO		RPN	VAC	OCT NO		RPM	VAC	N K	RES	MOTR	N I		RPM	VAC
	 C F	~ V	_ ·		 88	0 5	 v		1765	 8 7	4 29.8	 7 7	 p z	78.0		2125	2.8	1	-			-						
	٠.	•	•		~~	,.,	•				T 27.0			82.0			0.5											
														78.0			2.8											
														L				L										
10	c c	Y	P	2.3	A3	9.5	Y		744	8 7	0 29.9	2 6	52 3	93.0	3 U	2800	0.6	92.0	3 U	2700	1.6							
														94.0			0.6											
													4	92.0	3 U	2750	0.6											
													5	93.0	3 U	2800	0.6											
-01	C F	Y	P :	2.3	A3	9.5	Y		645	5 8	3 29.7	5 11	9 3	84.0	3L	2000	0.4	F										
													2	85.0	2U	2500	0.4											
													4	83.0	2U	3000	0.4											
													5	L														
17	CF	Y	P	2.3	A3	9.5	Y		774	3 7	0 29.1	0 5	0 3	88.0	2U	1300	0.5	87.0	2 U	1300	1.5							
													2	88.0	ZU	1300	0.5											
													4	88.0	2 U	1300	0.5											
													5	88.0	2 U	1300	0.5											
07	CF	Y	P	2.3	A3	9.5	Y		1098	9 7	0 29.3	1 6	30 3	84.0	3 U	2600	0.6	F				N						
													2	86.0	2 U	3000	0.6											
													4	83.0	20	2800	0.6											
														84.0			0.6											
80	CF	Y	P	2.3	A3	9.5	Y		990	0 7	0 29.6	7 4	7 3	84.0	ZU	2600	0.6	F				N						
														87.0			0.6											
														84.0	2U	2500	0.6											
													5															
96	CF	Y	P	2.3	A3	9.5	Y		928	0 7	0 29.3	5 5					0.2	F										
														82.0			0.2											
														82.0	20	2300	0.2											
													5		_													
14	CF	Y	P	2.3	A3	9.5	Y		925	0 7	1 29.0	7 5					0.8	80.0	3U	2100	3.0							
														84.0			8.0											
														81.5			0.8											
				_										84.0			0.8	_										
28	CF	Y	P	2.3	A.S	9.5	Y		8/9	3 6	9 29.9	1 3					0.7	F										
														86.0			0.7											
														80.0	20	4050	0.7											
^4		v		. 7	.7	0 F	J		9//	^ 7	0 30 7	- E	5			2400	A E	- TO 0		4/00	4 5							
10	C F	T	Ρ,	2.3	W)	9.5	T		044	7 1	0 29.3	2 =					0.5	79.0	20	1400	1.5							
														83.0 81.0			0.5											
														L	20	2300	0.5											
25	C E	ы	.	, E	47		V .4	2 41	063	1 7	7 20 N	, ,			711	2500	0.8	ŧ										
27	Ur	п		3	دم	J.7	. *1	a. T16	. 703	• •	3 29.0	•		83.0			8.0 8.0	•										
														82.0			0.8											
													•	ں۔۔۔ ں		E700	U.U											

		VEHI	CLE	DESCI	RIP	TION	į		١	ÆATHER	₹		OCI	TANE	NUMB	ER REQ	UIREMEN	NT C	ATA			TAI	NK FUE	LI	NFO	RMATIO	N
													•	1AX	IHUH		PAF	RT-1	THROTT	LE					ſ	RATER	
OBS.	T E Y M P C K E T S	S	T R A N	C.R.	A 1		AS	ODOM MILES		BAROM			OCT NO		RPM	VAC	OCT NO		RPM	VAC	0 K N K	OCT RES			E A	RPM	VAC
07-10		T 2.5		8.9	- Y			16640		30.45		 3	87.0	<u></u>	1900	0.0		_			n			!			
0. ,0	.		113		•			15010	•	54145					3000	0.0											
												4	84.0	4	2500	0.0											
												5	86.0	4.	2300	0.0											
05-04	CFN	P 3.0	A 4	8.9	Y	+12	+12	11409	70	29.90	50	3	90.0	3 U	1900	2.0			2450								
															2220	2.2	91.0	3U	2400	3.0							
															2460	1.0											
			_						 .						1800	2.0											
32-12	CFN	P 3.0	M5	9.3	Y	+10	+10	13966	70	29.28						0.5				2.0	N	92.6	83.7	N			1
															1700	0.5			1750	2.0							
															1750 1500	0.5 0.5			1650 1450	2.0							İ
06-05	CEN	P 3.0	47	. 0.3	v	_110	±10	2032	30	7 0 /7						0.8		•	1430	2.0	N			N			
00-03	CIN	r J.0	, 43	7.3	•	+10	¥10	0020	20	20.43					2500	0.8	•				"						
															2700	0.8				•							
															2600	0.8											i
28-10	CFN	P 3.0) A4	9.3	Y	+10	+10	7656	70	29.40						0.5	86.0	4L	1400	1.7							J
												2	88.0	4L	1500	0.5											- 1
												4	86.0	4L	1400	0.5											
												5	87.0	4L	1400	0.5]
07-06	CFN	P 3.0	A4	9.3	Y	+10	+10	7402	70	30.36	72	3	91.0	3 U	2900	0.0					N			A H	3 U	3200	4
															2700	0.5											j
															2700	0.5											
															2700	0.5											
29-19	CFN	P 3.0) A4	9.3	Y	+10	+10	18773	73	29.31						0.8	89.0	4L	1700	3.0							ł
															2900	8.0											- [
															2000 2700	8.0											
77.05	CFY	n 7 0	. ME		v	+10	±46.	20170	70	20.27						0.8 0.5	on n	7	2300	2.0	M			N			1
32-03	UPI	P 3.0	, mj	7.0	, ,	+10	¥10	20010	70	67.61					4100	0.5			2100	2.0				.,			ł
															4400	0.5			2000	2.0							ł
															2300	0.5			2500	2.0							1
28-08	CFY	P 3.0) A4	8.9	Y			8151	70	29.46						0.5	87.0	4U	1100	2.0)
												2	89.0	2 U	1200	0.5											
												4	87.0	20	1200	0.5											
												5	88.0	20	1200	0.5											j
47-29	CCN	P 3.0	M5	10.0	Y	+ 5	+ 5	12458	70	29.93	50	3	90.0	4	1500	0.2	89.0	4	2000	10.0							
															1500	0.2											1
															1800	0.2											
															1500	0.2											1
28-16	CFY	P 3.0) A4	9.0	Y	+15	+15	7871	70	29.00							86.0	40	1100	4.7							
															1100												1
															1100												•
												5	85.0	3 U	1100	2.3											1

		VEHI	CLE	DESC	RIPTI	ON		1	WEATHE	R	C	CTAN	E NUM	BER REQ	UIREME	NT (DATA			TA	NK FU	EL I	NFO	RMATIO	Ж
												MAX	IMUM		PA	RT-	THROTT	LE					1	RATER	
OBS. No.	Y M P C K		A N		AD A I AS		000M				F U E OCT	E		VAC	OCT			VAC	N	OCT		N H	E	RPM	VAC
28-21	CFY	P 3.0	- 	9.6	 Y +1	0 +10	7476	70	29.45	50	3 83.	 0 2u	3000	0.5	82.0	<u></u>	1800	3.0	-						
											2 84	0 20	2800	0.5											
											4 83.	.0 2U	3000	0.5											
		- - -									5 L														
24-04	CFY	P 3.0) A4	9.6	Y +1	0 +10	30000	66	30.29						85.0										
											2 88. 4 81.				86.0 80.0										
														2.0	80.0	40	2300	5.0							
24-05	CFY	P 3.0) A4	9.6	Y +1	n +1n	21450	68	30.29																
L4 03	• .	7 3.0	, ,,	7.0	,	0 110	£ 1430	-	30.27					2.0											
											4 80.														
											5 85.														
47-26	CCY	P 3.1	A3	8.9	Y		13825	70	29.93	58	3 98.	.0 3L	1900	2.0	94.0	3L	2000	3.0							
											2 98.	.0 3L	1900	2.0											
											4 90.	.0 3L	1900	2.0											
											5 97														
47-05	CCY	P 3.1	A3	8.9	Y		14085	70	29.94						870	3L	1900	3.0							
											2 90.														
											4 88.														
08-01	C E V	D 7 1			v		24702	00	20 55		5 90.				92 n	711	2200	, ,							
00-01	CFI	P 3.	. A3	0.0	T		21702	90	29.33		2 82.				82.0 84.0										
											4 82.				04.0	Ju	2230	4.0							
													1,300		L										
28-04	CFY	P 3.1	A4	8.8	Y		8508	70	29.10						82.0	3u	1400	2.0							
											2 88.					_									
											4 84.	.0 2u	1400	0.7											
											5 86.	.0 2U	1400	0.7											
47-07	CCY	P 3.1	A4	8.8	Y		11000	70	29.97	54	3 89.	.0 3L	2000	2.2	F										
											2 90.	.0 3L	2000	2.2											
											4 87														
											5 87														
29-11	CFY	P 3.1	I A4	8.8	Y		11350	73	29.10						87.0	30	2300	6.0							
											2 93														
											4 87.														
06-02	r E V	р र 1	I AA	яг	Y		7218	54	30 no		5 90. 3 82								N						
30°06			. ~~	0.5	•		, , 10	4	23.07		2 83								п						
											4 83														
											5 L			/											
08-07	CFY	P 3.1	1 A3	8.9	Y		6916	77	29.85			.0 3ı	1750	2.2	F										
											2 85														
											4 80	.0 31	1725	2.2											
											5 L				L										

			VEHI	CLE	DESC	RIPTIC	ж		1	WEATHE	R		OCTA	NE	NUMB	ER REQ	UIREMEN	NT I	DATA			TA	NK FU	EL INF	ORMATI	ON
			************										НА	ΙXΙ	MUM		PAF	₹ Т -	THROTT	LE					RATER	
OBS.	T E Y M P C E T	K	S Y	T R A N			AS	ODOM MILES					G E CT A	:	RPH	VAC	OCT NO		RPM	VAC	0 W K N			K N G I T E N H A T R R	RPM	VAC
 08-20		- v			80			24201	 AR	20 61	113	- -	0.03		2025	2.0	76.0	 311	2100	5.0	_					
00 20		•	r J.1	~	0.7	•		L7L01	-	L/.U/			2.0 3			2.0	70.0		2.00	J.0						
													8.0 2			0.5										
												5 L					L									
47-11	CF	Y	P 3.1	A3	8.9	Y		17299	70	29.91	56	3 9	7.0 3	L	2000	2.0	96.0	3L	2200	3.0						
												2 9	9.0 3	L	2000	2.0										
												4 9	1.0 3	L	2000	2.0										
												5 9	7.0 3	L	2000	2.0										
08-05	CF	Y	P 3.1	A 4	8.8	Y		19888	79	29.80							76.0	3 U	2050	7.5						
													8.0 4	L	1525	2.5										j
												4 L					L									
											405	5 L			4505		L									- 1
08-15	CF	Y	P 3.1	A4	8.8	Y		12442	88	29.78						1.5										
													2.0 4 6.0 3			1.5 2.0										
												5 L	0.0 3	L	2030	2.0										ł
08-04	L E	u	ם ז ז	. 44	20	•		25004	75	20 06	97		ኳ ሰ ኃ	71 1	3350	1.0										- 1
	•	••		•	•••	•			••	-,,,,			2.0 2			1.0	•									- 1
													8.0 2			1.0										ł
												5 L					L									
29-03	CF	N	P 3.3	A 4	8.9	Y		16520	68	29.20	52	3 8	9.0 4	L	2700	1.0	F									
												2 9	1.0 3	U	3000	1.0										- 1
												4 8	4.0 3	Ü	3200	1.0										1
												5 8	6.0 4	L	2600	1.0										ſ
29-04	CF	N	P 3.3	A4	8.9	Y		16129	68	29.23	51	3 8	8.0 3	ีย	3300	1.0	85.0	4L	1900	2.5						l
													1.0 4			1.0										
													5.0 3			1.0										
													8.0 3			1.0										- 1
28-02	CF	Y	P 3.3	A 4	8.9	Y		8542	70	29.42	50					0.5	80.0	4L	1200	1.7						
													3.0 2			0.5										- 1
													0.0 2	ĽU.	2300	0.5										
05-13		v	n 7 7	47	0.0	v		12725	70	7 0 F0	EO	5 L									M	08.2	88.2	N		
05-13	L r	1	F 3.3	7.3	7.0	1		16163	70	30.30	50	3 F					1				~	70.2	00.2	_		ı
												4 L					Ĺ									ł
												5 L					Ĺ									1
29-15	CF	Y	P 3.3	A3	9.0	Y		23051	73	29.15	40		1.0 3	ŠL,	1800	.0	F									ľ
	- •							•					3.0 3			1.0										
													7.0 3			1.0										Ī
													0.0 3			1.0										ł
47-19	СС	Y	P 3.3	A 4	9.0	Y		22963	70	29.96	50					1.2	89.0	3L	1800	2.2						1
			_										3.0 3			1.2										
												4 9	0.0 3	šL	1800	1.2										
												5 9	1.0 3	ŠL	1800	1.2										
																										I

			VEHI	CLE	DESCI	RIPT	ION			١	ÆATHE	R	ОС	TAN	E NUME	BER REC	UIREME	NT	DATA			TA	NK FU	EL	INFO	RMATIO	ON
														MAX	IMUM		PA	RT-	THROTT	LE						RATER	
	Y M		F/A S	A		A -	SPAR	ICE				U		G E				G E		·	0 W K	ост	NO	K N I	ΓE		
OBS. NO.	P C E T			N S	C.R.				ODOM MILES		BAROM		OCT NO		RPM	VAC	OCT NO		RPM	VAC	N K	RES	MOTR	N I		RPM	VAC
08-12	 C F	– Y	— — Р 3.3	 A3	9.0	 Y			6158	 78	29.85	113 3	86.0	 3U	2400	2.0	F				-				_		
												2	92.0	3 U	2225	2.0											
												4	84.0	3 U	2400	2.0											
												5	L				L										
08-30	CF	Y	P 3.3	A3	9.0	Y			6934	75	29.67	45 3	90.0	3 U	2225	1.5	89.0	30	2150	4.0							
												2	91.0	3 U	2275	1.5											
												4	88.0	3 U	2200	1.5											
													90.0			1.5											
80-80	CF	Y	P 3.3	A3	9.0	Y			14902	88	29.96	104 3	90.0	3L	1650	1.5	94.0	3L	1575	6.0							
												2	91.0	3L	1550	1.5	95.0	3L	1600	6.0							
												4	86.0	3L	1650	1.5											
													90.0			1.5	90.0	3L	1400	6.0							
08-27	CF	Y	P 3.3	A3	9.0	Y			7751	70	29.65					1.2	91.0	3L	1400	5.0							
													93.0			0.5	93.0	3L	1800	5.0							
													84.0			1.2											
													88.0			1.2		3L	1425	5.0							
05-15	CF	Y	P 3.4	A 4	9.3	Y			17290	70	30.45					0.2	L										
													81.0			0.2											
													80.0	20	1700	0.2											
													i L				L										
32-03	CF	N	P 3.8	A4	9.0	Y +	·10 +	·10	16859	70	29.30						94.0				Y	90.8	82.4	В	4 4	1700	0.5
													94.0			0.8	94.0			2.0							
													93.0			0.5			1500	2.0							
									47/5/	_			93.0			0.5			1400	2.0							
29-23	CF	N	P 3.8	A 4	9.0	Υ +	+ 10 +	10	13656	72	29.10						89.0	4	1700	3.0							
													92.0			8.0											
												4	90.0	4	1800	8.0											
/7-07		J	cn 7 0	A /:		v .	40.4	40	7150	70	20 00	50 Z	. 04 U	,	1750	-4 N	05.0	,	1700	5.0							
47-03		1	37 3.0	A4	0.2	1 7	10 4	10	7 130	10	27.70		97.0				95.0	4	1700	3.0							
													96.0														
													96.0														
32-14	r c	u	D 7 9	A 4	a n	٧.	.10 4	.10	27600	70	20 52					1.0	85 A	41	1400	4.0	ы	92.2	83.5	u			
JE- 14	u r		P 3,0	77	7.0	' '	10 1	10	21007	10	27.32		86.0			1.0			1450	6.0		72.2	03.7	-			
													85.0						1400	6.0							
													84.0			1.0			1400	6.0							
08-03	C E	v	D 3 8	44	25	v			7277	72	20.00		92.0			1.0		7.	1400	0.0							
00 03	•	•		7	0.5	•				• •-	,		95.0			1.0	•										
													84.0			1.0											
													91.0			1.0											
29-10	C F	Y	P 3.8	44	8.5	Y			7749	74	29.10		88.0			1.0	F										
··	- •	•			,	•				, 4			89.0			1.0	•										
													84.0			1.0											
													87.0			1.0											
												-		_0	_, ,,												

	VEHICLE	DESCRIPTION	WEATHER	OCTANE NUMB	ER REQU	JIREMENT DATA		TA	NK FUE	L INFO	ORMAT I	NC
				MAXIMUM		PART-THROTTLE		····			RATER	
OBS.	T E F/A R Y M S A P C K Y N E T S S DSP S	SPARK ADVANCE A I AS AS ODOM C.R. R RCD TST MILES		F G U E E OCT A IL NO R RPM	VAC	G E OCT A NO R RPM V	O K K N NC	OCT	NO			VAC
07-01	C F Y SP 3.8 A4	8.5 Y 5799	72 30.06 72	3 85.0 4L 1700	3.0					 N		
				2 85.0 4L 1650	3.0							
				4 84.0 4L 1700	3.0							
				5 L								
24-02	C F Y P 3.8 A4	8.5 Y 20959	64 29.87 55		0.5							
				2 81.0 4L 4100 4	0.5							
				5								
08-13	C F Y P 3.8 A4	8.5 Y 6500	85 29.90 109	_	1.0	84.0 4L 1200 3	3.5					
					1.0							1
				4 84.0 4L 1300	1.0							
				5 86.0 4L 1300	1.0							,
08-24	C F Y P 3.8 A4	8.5 Y 7926	75 29.80 0		1.0		3.0					İ
				2 90.0 4L 1250	1.0	89.0 4L 1225	3.0					
				4 88.0 4L 1225	1.0							ł
7/-04	C F Y P 3.8 A4	9 E V 34017	70 70 15 40	5 89.0 4L 1250	1.0	NE 0 /1 2700						
24-06	UFT P3.0 A4	0.5 1 20013	70 30.13 69	7 3 85.0 4L 2600 2 86.0 4L 2400	1.0 1.0		0 0					
				4 84.0 4L 2300	1.0		.0					- 1
				5 86.0 4L 2450	1.0		.0					
07-14	C F Y SP 3.8 A4	8.5 Y 6317	72 30.70 37		2.0		N			N		- 1
				2 87.0 40 2950	2.0							ļ
				4 82.0 40 2950	2.0							
				5 L								- 1
05-01	C F N P 4.6 A4	9.0 Y 23178	70 30.10 50	3 96.0 4 1230	0.8							
				2 97.0 4 1620	0.6							
				4 95.0 4 1250	0.8							ł
32-20	L E M D 7 Y WY	9.0 Y +10 +10 33543	70 28 71 52	5 94.0 4 1200	0.8 0.5	97.0 4 1000 2) N u	91.0	82 7	R M L	1300	0.
J2 20	C 7 N 7 4.0 X4	7.0 1 710 110 33343	10 20.77 32	2 97.0 4 1100	0.5		2.0	71.0	uz.,	4 11 4	1500	ľ
				4 97.0 4 1100	0.5		2.0					- 1
				5 96.0 4 1100	0.5		2.0					
47-24	C C N P 4.6 A4	9.0 Y 9261	70 29.90 50	3 97.5 2 3700	0.5	95.0 3 1350	1.5					1
				2 100.5 2 3700	0.5							- 1
				4 94.0 4 1300	0.5							
				5 97.5 2 3700	0.5							
28-11	C F N P 4.6 A4	9.0 Y 7723	70 29.40 50	3 93.0 4L 1300	0.5	93.0 4L 1300	1.7					
				2 94.0 4L 1300	0.5							1
				4 93.0 4L 1400 5 93.0 4L 1400	0.5 0.5							ı
29-01	CFN P4.6 A4	2.0.4 Y 0.0	68 29.30 41	3 94.0 4L 2500	0.2	93.0 4L 2600	2.5					ı
-, -,	3 1 W F 710 M7	,		2 95.0 4L 2500	0.2	7510 75 KUVU 1						
				4 94.0 4L 2300	0.2							ł
				5 95.0 4L 2600	0.2							

			VEHI	CLE	DESC	RI	PTIO	N		ı	ÆATHEI	R	OC	TAN	E NUME	BER REQ	UIREMEI	NT I	DATA			TA	NK FU	EL	INFO	RMATIC	ON
	_													MAX	IMUM		PAI	RT-	THROTT	LE						RATER	
85.	T E Y M P C		S	T R A N		A		ANCE	00 OM	AMB		U	OCT	G E	-		ост	G E			0 W K N	ост		K N I	T E		
0.	ET	S	S DSP	\$	C.R.	R	RCD	TST	MILES	TMP	BAROM	HUM L	NO	R	RPM	VAC	NO	R	RPM	VAC	K	RES	MOTR	T	RR	RPM	VAC
-02	C F	- · N	P 4.6	A4	9.0	· -			16645	68	29.30	41 3	96.0	4L	2400	0.2	94.5	4L	2400	3.0	-			-			
												2	97.0	3L	3400	0.2											
												4	96.0	4L	2600	0.2											
									•			5	96.0	4L	2500	. 0.2											
-11	CF	N	P 4.6	A 4	9.0	Y	+10	+10	25608	70	29.03					1.4	90.0	4	950	6.0	Y	91.3	82.8	8 1	M 2	3500	1.4
													94.0			1.4	91.0	3	2300	2.0							
													93.0			1.4			2550	2.0							
													92.0			1.4			1050	2.0							
-04	CF	N	P 4.6	A 4	9.0	Y	+10	+10	11366	70	29.28					0.5			1000		N	91.5	82.4	B !	M 4L	1400	0.5
													92.0			0.5			1000	2.0							
													91.0			0.5			1000								
													90.0			0.5			1000								
-02	CC	N	P 4.6	A 4	9.0	Y			20450	70	29.90					0.5	93.0	4		1.5							
													94.0			0.5											
													93.0			0.5											
											- 0 0/		94.0			0.5											
- 16	CF	N	P 4.9	A4	9.5	Y	+10	+10	8534	84	30.06					1.8			2600								
													92.0			1.8	90.0	30	2575	4.0							
													90.0			1.8											
24		••		.,	۰.			. 40	0254	٠,	20 54		91.0			1.8	04.0	~	4050	~ ^							
-20	CF	N	۲ 4.9	A 4	y.5	1	+10	TIU	8251	14	29.31					0.7	86.0	30	1850	7.0							
													89.0 88.0			3.0											
																1.8											
- 20			n / 0	A /	0.5	v	440	410	17400	70	20 04		91.0			1.8	107.0	,,	4750	42 E							
-28	CC	N	7 4.9	A4	9. 5	T	+10	ŦIU	17400	70	29,90		98.0			2.0	103.0										
													90.0			2.0 2.0	103.0	46	1330	12.3							
													98.0				103.0	<i>L</i> 1	1750	12 5							
-12	C E	u	D 5 A	A /-	۵ ۸	v	410	±10	7650	70	20 21					0.7			1700								
- 12		~	r 3.0	77	7.0	•	. 10	. 10	1030		L/,L1		86.0			0.7	ω.υ	_	1700								
													84.0			0.7											
													84.0			0.7											
-19	CE	u	P 5.0	44	9.0	Y	+10	+10	19688	70	29.46					0.8	87.0	4	1500	2.0							
.,	•	••		~~	,	•	• ••		.,,,,,				88.0			0.8			1500	2.0							
													87.0			0.8			1500	2.0							
													86.0			0.8			1400	2.0							
-19	CF	Y	T 5.0	A 4	9.3	Y	0	0	6991	78	29.89				3125	1.1			1250								
		•				٠	•	•					91.0			1.1											
												4			1650	1.1											
												5			1625	1.0											
-29	CF	Y	T 5.0	A4	9.3	Y			2206/	71	29.52	24 3				0.8	89.0	3L	1225	7.5							
					_								91.0			0.5											
													89.0			0.5											
-29	C F	Y	т 5.0	A4	9.3	Υ			2206/	71	29.52	24 3 2 4	90.0 91.0	3U 2U 2U	2025 1850 1900	0.8 0.5			1225 1000								

	VEHICLE DESCRIPTION				WEATHER			OCTANE NUMBER REQ			R REQUIREMENT DATA					TA	NK FU	EL I	NFO	RMATIC	D N						
														MAX	INUM		PA	RT-	THROT	LE						RATER	
OBS. NO.	T E Y M P C K E T S	S		T R A N	C.R.	A I		ANCE AS				U E	OC.		RPM	VAC	OCT NO		RPM	VAC	0 W K N K		NO MOTR	N H	E	RPM	VAC
		_				-	_			_								_			-					. ——	
29-09	CFY	T	5.0	A 4	9.3	Y	0	0	11765	76	29.08				1200 1300	1.6	95.0	3U	1700	3.0							
															2000	1.0											
															1700												
47-04	CCY	T	5.7	A4	9.8	Y	0	0	9900	70	30.15					1.2	97.0	4L	1150	12.0							
												2	99	.0 2U	2500	1.2											1
												4	93	.0 2U	2000	1.2											1
												5	93	.0 2U	2000	1.2											
47-17	CCY	T	5.7	A 4	9.8	Y	0	0	21400	70	29.95	52 3	100	.0 3U	2300	1.2	103.0	4L	1300	12.0							
															2250		103.0	4L	1250	12.0							
															2300	1.2		••		4							
70 45		_					. 40	. 40	. 774	~^	20.47				220%		105.0					04.0					ł
32-15	IFN	P	4.3	MO	9.2	Y	+10	+10	6/31	70	29.13				1350	0.2	92.0		1300	2.0	N	91.0	82.8	ĸ			- 1
															1300	0.2			1300	2.0							Ì
															1300	0.2			1300	2.0							
47-23	TCY	P	2.4	A 4	9.3	Y	+ 5	+ 5	10181	70	29.94								2750	2.0							ĺ
															2800	1.0											- 1
												4	96	.0 40	2650	1.0											1
												5	96	.0 40	2700	1.0											ļ
32-08	TFN	P	3.0	A 4	9.3	Y	+10	+10	19043	70	29.36	50 3	87	.O 4L	1750	1.0	87.0	4L	1800	2.0	N	93.2	84.6	N			- 1
															1800				1900	2.0							. [
															1700	1.0			1800	2.0							- 1
		_								_					1800				1900	2.0							
29-22	TFN	P	3.0	A 4	9.3	Y	+10	+10	20095	/3	29.30					1.0	93.0	4L	2000	4.0							- 1
															2900 2800	1.0 1.0											
															3100	1.0											- 1
47-22	TCN	P	3.0	A4	8.5	Y	+11	+11	15500	70	29.98					1.0	94.0	4L	1750	2.0							- 1
41 02	. •	•		•••		•	•••	•••		•••					2500	1.0	,,,,			•••							ł
															2000	1.0											
												5	95	.0 31	2250	1.0											1
47-20	TCY	P	3.0	A 4	9.0	Y	+10	+10	7681	70	29.83	50 3	97	.0 3L	3000	1.0	95.0	3L	2750	2.2							1
												2	99	.0 3L	3000	1.0											
															2750	1.0											1
															3000	1.0											1
08-25	TFY	T	3.1	A3	8.5	Y	+10	+10	18288	75	30.04					2.4	82.0	30	2325	4.0							
												_			2600												
															2675												1
29-16	7 E V		7 4	47	0.4	v	140	410	17477	72	20 77				2625												
C7- 10		•	J. 1	7.3	7.1	1	710	¥ 10	1103/	13	67.31				2200		r										
															2500												
															2100												
												_															

			AEU	LLE	DESC	KII						WEATHE	· 		CIAN	E NUMI	BER REQ	UIKEM						NK FU			RMA11)N
															MAX	IMUM		P/	IRT-	THROT	TLE						RATER	
	T E Y M		F/A S	T R			AD'		ICE					 F J	G E				G E			0 W K	nct	NO	K N I 1			
OBS.	PC	ĸ		N						MOCO	AME	l .		OCT				OCT				N						
NO.					C.R.							BAROM				RPM	VAC	NO.		RPM	VAC	•••	RES				RPM	VAC
07-12	 T F	_ ·	— — Р 3.3	A4	8.9		_		_	18021	71	29.92	35 3	- - 86.	 0 4U	2800	2.0					-						
														2 87.			2.0											
														4 82.	0 4U	3000	2.0											
														85.	0 40	2850	2.0											
06-03	T F	N	P 3.3	A4	8.9	Y				6918	58	29.81	24 3	82.	0 3L	1700	0.5	78.0	3L	1700	2.0	N			N			
													2	2 82.	0 3L	1600	0.5											
															0 3L	1600	0.5											
													5	5 L														
7-21	T C	N	P 3.3	A 4	8.9	Y				14900	70	29.94					0.7	81.0) 4L	1500	4.0							
														2 85.			0.7											
															0 3 U	2500	0.7											
														i L														
07-05	TF	N	P 3.3	A 4	8.9	Y				22815	70	30.27					0.0					N			N			
														2 88.			0.0											
														83.			0.0											
29-17	.	J	n 7 0			v				4220		29.37		85.			3.3	95 6		4/00	7.0							
.9-17	1 F	T	P 3.0	. A4	0.3	τ				0229	12	29.31		90. 2 90.			1.0	65.4) 4L	1400	3.0							
																2000	1.0											
													_			1500	1.0											
PR-06	T F	u	P 3.9	44	0 1	٧	+11	Λ 4	-10	8313	70	29.50					0.5	86.0	1 4 11	2200	1.5							
.0 00	• •			~~	7.1	٠	• • •	•	,,,	0515	, ,	27.30		91.			0.5	00.0	, 40	2200	1.5							
														87.			0.5											
														85.			0.5											
9-30	T F	N	P 3.9	A4	9.1	Y	+10	0 +	10	6415	74	29.10					0.8	F										
										•		_,,,,,		2 91.			0.8	•										
																2200												
														88.	0 40	2100	0.8											
7-03	T F	N	P 4.0	M5	9.0	Y	+16	0 4	10	11051	70	30.12	80 3	88.	0 4	2600	0.0					N	89.0		N			
													7	2 89.	0 4	2700	0.0											
													4	87.	5 4	2600	0.0											
														85.	0 4	2100	0.0											
2-10	T F	N	P 4.0	A4	9.0	Y	+1	0 +	10	14024	70	29.52	50 3	5 94.	0 4L	2000	1.0	94.0	40	3000	8.0	Y	93.4	84.5	A M	4L	2000	1.0
													7	2 95.	0 4L	5000	1.0	95.0	4L	1600	8.0							
													4	4 94.	0 4L	2000	1.0			3000	8.0							
																2000				3000	8.0							
32-17	T F	N	P 4.0	A4	9.0	Y	+11	0 4	-10	6777	70	1				2000				2650	3.0	N	97.0	87.7	N			
														2 89.			1.5			2650	3.0							
																2650				2650	3.0							
										4165-						2000				2700	3.0							
7-32	T C	N	P 4.0	A4	9.0	Y	+1	0 1	10	14882	70	29.75						90.0	, 4L	2600	2.0							
																4250												
																2500												
													:	95.	u ZU	4250	1.2											

				VEHI	CLE	DESC	RIPI	TIO	N		(HEATHE	R		OC:	TANI	E NUMB	ER REQ	WIREME	NT	DATA			TA	NK FUI	L I	NFOF	RMATIC	H
										 					'	HAX	MUM		PAI	RT-	THROTT	LE					R	RATER	
400	Y	E M	S	;	T R A		A -	\!\!\d	ARK ANCE		AMO					G E			700	G E			0 ¥ K	ОСТ		K N I T N H	E		
OBS. NO.		C K			N S	C.R.				ODOM MILES			HUM		OCT NO		RPM	VAC	OCT NO		RPM	VAC	K	RES	MOTR			RPM	VAC
29-29	T	FY	1	4.3	A4	9.3	γ	0	0	32210	73	29.21	40	3	78.0	<u></u>	3300	0.6	F				_				_		
														_	98.0			0.6											
															94.0			0.6											
/7.01				. , ,	.,			^	^	47//5	70	20.00	5 0	-		-	3300	0.6	100 E	,,	1500	10.0	v						
47-01	I	FI	1	4.5	A 4	9.3	Y	Ü	U	15645	70	29.90	50		99.0			1.0	100.5	4L	1500	10.0	T						
															94.0			1.0											
															-		3500	1.0											
28-05	Т	FΥ		4.3	A4	9.1	Y	0	0	7618	70	29.38						0.5	85.0	3 U	3100	1.5							
															87.0			0.5											
														4	85.0	3 6	2900	0.5											
														5	85.0	3υ	3000	0.5											
29-26	ſ	F١	. (4.3	A 4	9.1	Y	0	0	25041	74	29.04	70	3	97.0	3 U	2500	1.0	96.0	3 U	1600	4.0							
																	2500	1.0	99.0	3 U	1800	4.5							
															95.0			1.0											
	_														97.0			1.0											
07-04	T	F١	P	4.9	M5	8.8	Υ -	+10	+10	8954	70	30.13	60					0.0					N			K			
															89.0			0.0											
															88.0 88.0			0.0											
32-18	r	FY			A &	2 2	٧.	- 1∩	+10	22933	70	20 46	52					1.0	0 5 n	41	1250	2 በ	v	ດາ ະ	82.8	A M	41	1500	1
JL 10	•	•	•	7.7	7	0.0	•		. ,0	LL/30		27.70					1450	1.0			1300	2.0	•	,	02.0	~ "	76	.500	•
																	1400	1.0			1200	2.0							
															94.0			1.0			1300	2.0							
29-27	T	FY	Р	4.9	A3	8.8	Υ -	+10	+10	22120	74	29.17	40	3	85.0	2	2300	1.4	F										
														2	88.0	2	3500	1.4											
														4	85.0	2	2200	1.4											
														5	86.0	3	2200	1.4											
05-03	T	FY	P	4.9	A 4	8.8	Υ -	+10	+10	8350	69	30.30	50					1.0	F										
																	1460	1.0											
																	1400	1.0											
AT 17	-				we.		U			40076	70	70 43	76				1380	1.0					21						
07-13	ı	t 1	۲	5.0	H2	9.0	. 1			10236	70	30.12	37				2000	0.0					N			N			i
																	1800	0.0											1
														5		•	1000	0.0											
24-03	T	F١	, p	5.0	A 4	9.0	γ.	+10	+10	5652	50	29.85	38			4 L	1900	0.5	85.0	4L	2500	3.0							
••	•	•	•		,		-	. •			- •			_			2500	0.5			2400	3.0							ĺ
																	2200	0.5			2200	3.0							- }
																	1900	0.5			2100	3.0							
32-09	7	FΥ	F	5.0	A 4	9.0	γ.	+10	+10	33137	70	29.76	50	3	91.0	4L	1550	1.0	91.0	3L	2200	2.0	N	93.2	84.4	8 M	3 L	2250	- 1
														2	92.0	3L	1700	1.0	92.0	3L	2100	2.0							
														4	91.0	3L	1700	1.0	91.0	3L	2200	2.0							
														E	01.0	71	1500	1.0	01.0	71	1500	2.0							- 1

				٧	EHI	CLE	DES	CR	IPT	TON	ı			WEATHE	R		oc.	FAN	E NUME	BER REQ	UIREME	NT	DATA			T/	NK FU	EL	INF	ORMAT I	ON
																_	1	YAX	IMUM		PA	RT-	THROTT	LE	_					RATER	
		E		:/A S		T R			A		IRK INCE					F		G			-	G E			0 ₩ K		. NO	K	G		
OBS.		п С 1				N						ODOM	AMO			_	OCT			•	OCT						- NO				
NO.					nep		ro							BAROM							NO		RPM	VAC						RPM	VAC
HU.	_					_		·•	n n					DARGE		_		_							_						
47-25	Т	C '	Y	P	5.0	A 4	9.	0	Υ	-10	+10	7250	70	29.99	50	3	91.0	3L	2000	0.5	90.5	3L	2000	1.5							
																2	91.0	3L	2000	0.5											
																4	90.0	3L	2000	0.5											
																			1500	0.5											
47-31	T	C '	Y	P !	5.0	A 4	9.	0	Y +	-10	+10	14615	70	30.06	50					1.0	92.0	3L	2500	1.8							
																	94.0			1.0											
																4	92.0	20	2250	1.0											
																5	93.0	20	2500	1.0											
28-07	Ţ	F	N	T	5.2	A3	9.	1	Y 4	-10	+10	7720	70	29.26	50					0.7	85.0	3	3200	1.7							
																2	88.0	3	3200	0.7											
																	85.0			0.7											
																	85.0			0.7											
05-08	Ŧ	F	Y	T :	5.7	A4	9.	1	Y	0	0	7662	70	29.90	50					1.0	F										
							. •			Ť				_,,,,			95.0			1.0											
																	91.0			1.0											
																	89.0			1.0											
05-12	T	F '	4	T	5.7	M5	9.	1	Y	0	0	17084	69	30.20	50						92.0	3	1700	8.0	N	98.1	88.4	N			
								-		-	-					2			.,				1650	8.0							
																_	93.0	3	1910	0.4		•		-							
																5		_		•••	96.0	3	2500	8.0							
07-11	۲	F '	Y	T :	5.7	M5	9.	1	Y	0	0	9467	73	29.98	67	3	92.0	3	2300	0.0		_		•••	N			N			
	·	•		•				•	•	_	-						93.0			0.0					••						
																	90.0			0.0											
																	91.0			0.0											
29-28	т	F '	Y	т :	5.7	# 5	9.	1	Y			6400	73	29.18	43					0.2	88.0	5	1100	4.0							
	•	•	•	•	•••			•	•				•	4,			91.0			0.2	••••		,,,,,	****							
																	90.0			0.2											
																	91.0			0.2											
32-21	т	E 1	2	D 1	5 2	A /-	R	g ·	۰ ۸	-10	±10	10607	70	20 64	52					1.0	20.0	Zi	1200	2.0							
96'E1	•	• 1	•		٠.٠	~~	٥.	•	' '	10	- 10	10073	70	27.40	JE		91.0			1.0	90.0			2.0							
																	90.0			1.0	90.0			2.0							
																3	89.0	ЭL	2070	1.0	89.0	JL	1200	2.0							

APPENDIX F

PROCEDURES FOR CALCULATING AND PLOTTING
OCTANE NUMBER REQUIREMENT DISTRIBUTION DATA

WEIGHTED VEHICLE POPULATIONS

Weighting factors for each model tested were proportioned to the productions and/or sales volumes developed from information supplied by U.S. vehicle manufacturers and from published information (Ward's Automotive Reports) for The weighting factors of each vehicle model were divided by the number of vehicles tested within the model to calculate the individual vehicle weighting factor. The octane requirement for each vehicle were then arranged in increasing order. The percent of vehicles at each octane level is the summation of all vehicle weighting factors with octane requirements lower than that level, plus one-half the sum of the weighting factors at that level. The individual vehicle weighting factors are adjusted so that the summation of all vehicle weighting factors within the population of interest equals 100. Vehicle weighting factors for vehicles with octane requirements lower (L) than the lowest available fuel are assigned to the beginning of the distribution while weighting factors for vehicles with octane requirements higher (H) than the highest test fuel are assigned above the highest test fuel octane level. For L and H octane requirements no octane value is used in the computation of octane satisfaction.

Octane satisfaction at population distribution points of interest is interpolated from the above distributions based on numeric octane data and an assumption of normal distribution between the two interpolation points.

DATA ROUND-OFF

The octane number requirements were rounded by the computer to one decimal place. All computations leading to the final rounded values were carried out at the full precision of the computer. In previous surveys the computer rounded requirement data to two decimal places. In preparing report tables the Analysis Panel rounded the computer decimal requirements to one decimal place.

In order to provide consistent treatment comparing 1990 and 1991 survey data, the 1991 data were recomputed and rounded to one decimal place by the computer. This can result in occasional small differences (e.g. \pm 0.1) if a comparison is made using the data in the 1991 survey report.

SELECT CAR MODELS

For individual models, the octane number requirement distribution curves were plotted by the "%" method as described in "Statistical Estimation of the Gasoline Octane Number Requirement of New Model Automobiles," C. S. Brinegar and R. R. Miller, <u>Technometrics</u>, Vol. 2, No. 1, February 1960.

The procedure is as follows:

For any vehicles having octane requirements lower (L) than the lowest octane number fuel available within a given fuel level, a number 0.5 Research/0.4 Motor lower was assigned. Similarly, for individual vehicles having octane requirements higher (H) than the highest octane fuel available within a given fuel series, a number 0.5 Research/0.4 Motor higher was assigned.

Using all observed and estimated octane number values, calculate the mean (X) and the standard deviation (s) from the data for each model.

$$s = \begin{bmatrix} \frac{1}{n-1} & x & (x - x)^{2} \\ \frac{1}{n-1} & \frac{1}{i} & \frac{1}{i} \end{bmatrix}$$

Where X_i = Octane number requirement of ith car of a given model n = Number of cars of that model.

Estimate octane number requirements at the percentiles of interest from octane number requirement distribution data by

$$O.N. = \overline{X} + ks$$

Where k is selected from normal distribution tables.

Values of k used to calculate percentiles in this report are:

Percentile	<u>k</u>
5	-1.645
10	-1.282
20	-0.842
30	-0.524
40	-0.253
50	0
60	+0.253
70	+0.524
80	+0.842
90	+1.282
95	+1.645

APPENDIX G
CONFIDENCE LIMITS OF
OCTANE NUMBER REQUIREMENT DISTRIBUTIONS

CONFIDENCE LIMITS OF OCTANE NUMBER REQUIREMENT DISTRIBUTIONS

Octane number requirements of vehicles presented in this Survey are determined at the levels that satisfy certain percentages of specific vehicle populations. In many cases, the recorded octane number requirement is followed by a plus and minus limit, referred to as the confidence interval. These limits are expected to bound the true requirement of the population represented by the test vehicles 95 percent of the time in replicate testing of the same number of test vehicles.

At the 50 percent satisfaction level, the 95 percent confidence interval is calculated as follows:

$$CI = +ts/(n)^{1/2}$$

where t = Students t at the proper number of degrees of freedom*

s = Standard deviation, calculated directly from the data or estimated as the difference between the 84.16th and 50th percentiles (assuming normal distribution)

n = Number of vehicles in population.

At other satisfaction levels:

$$CI = \pm ts[1/n + k^2/[2(n-1)]]^{1/2}$$

At the 90 percent satisfaction level, k = 1.2817. For other satisfaction levels, appropriate values for k may be found in the standard statistical tables.

Degrees of Freedom**	t_	Degrees of Freedom**	t
1	12.706	18	2.101
2	4.393	19	2.093
3	3.182	20	2.086
4	2.776	21	2.080
5	2.571	22	2.074
6	2.447	23	2.069
7	2.365	24	2.064
8	2.306	25	2.060
9	2.262	26	2.056
10	2.228	27	2.052
11	2.201	28	2.048
12	2.179	29	2.045
13	2.160	30	2.042
14	2.145	40	2.021
15	2.131	60	2.000
16	2.120	120	1.980
17	2.110	σο	1.960

^{*} Distribution of t for probability = 0.05.

^{**} Degrees of Freedom = (n-1).

95% CONFIDENCE LIMITS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

1992 Weighted Population Groups

95% Confidence Limits

						73% Confidence Limits									
					andard viatio		R	ON	Ж	Ж	(R+I	1)/2			
Population	Fuel	No. Veh.	t	RON	MON (R+M)/2	50%	90%	50%	90%	50%	90%			
roputation		***	•••••			****				****					
1992 Vehicles															
		407	4 077	/ 00	/ 00		0.77	^ ^	0.77	0.00		0.00			
	PR	183	1.973		4.98		0.73	0.98	0.73	0.98	0.73	0.98			
	FBRU	183	1.973 1.973	6.23	4.15	5.12	0.91 0.84	1.23 1.14	0.59	0.79 0.82	0.75	1.01			
	FBRSU FBRUM	184 179	1.973	6.89	3.42		1.02	1.37	0.60 0.50	0.68	0.72 0.76	1.02			
	LRKOM	179	1.973	0.09	3.42	2.13			U.5U	V.08	U.76	1.02			
nger Cars							, v								
	PR	145	1.977	3.61	3.61	3.61	0.59	0.80	0.59	0.80	0.59	0.80			
	FBRU	145	1.977	4.68	2.76	3.72	0.77	1.04	0,45	0.61	0.61	0.82			
	FBRSU	146	1.976	4.48	3.04	3.76	0.73	0.99	0.50	0.67	0.61	0.83			
	FBRUM	141	1.977	4.99	2.49	3.74	0.83	1.12	0.42	0.56	0.62	0.84			
-Duty Trucks & Vans															
***************************************	'														
	PR	38	2.025	3.50	3.50	3.50	1.15	1.56	1,15	1.56	1.15	1.56			
	FBRU	38	2.025	5.60	4.19	4.89	1.84	2.50	1.38	1.87	1.61	2.18			
	FBRSU	38	2.025	4.45	3.44	3.94	1.46	1.98	1.13	1.54	1,29	1.76			
	FBRUM	38	2.025	4.97	2.55	3.76	1.63	2.22	0.84	1.14	1.23	1.68			
Common Wohieles															
Sensor Vehicles						•									
	PR	87	1.987	6.30	6.30	6.30	1.34	1.82	1.34	1.82	1.34	1.82			
	FBRU	87	1.987	7.57	5.18	6.37	1.61	2.18	1.10	1.49	1.35	1.83			
	FBRSU	88	1.987	7.36	5.38	6.37	1.56	2.11	1.14	1.54	1.35	1.82			
	FBRUM	87	1.987	7.18	3.62	5.40	1.53	2.07	0.77	1.04	1.15	1.55			